福建省三明市2022-2023學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第1頁
福建省三明市2022-2023學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第2頁
福建省三明市2022-2023學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第3頁
福建省三明市2022-2023學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第4頁
福建省三明市2022-2023學年數(shù)學高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知兩點,,若點是圓上的動點,則△面積的最小值是A. B.6 C.8 D.2.在銳角中,若,,,則()A. B. C. D.3.已知角的終邊經(jīng)過點,則=()A. B. C. D.4.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于()A.1 B.5 C.9 D.45.在中,,,其面積為,則等于()A. B. C. D.6.若正實數(shù)滿足,且恒成立,則實數(shù)的取值范圍為()A. B. C. D.7.已知直線與直線平行,則實數(shù)m的值為()A.3 B.1 C.-3或1 D.-1或38.下列結論正確的是()A.若則; B.若,則C.若,則 D.若,則;9.已知在R上是奇函數(shù),且滿足,當時,,則()A.-2 B.2 C.-98 D.9810.在中,內角的對邊分別為,且,,若,則()A.2 B.3 C.4 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知過兩點,的直線的傾斜角是,則______.12.不等式的解集為________13.已知的三邊分別是,且面積,則角__________.14.直線x-315.已知向量,則___________.16.過點且與直線l:垂直的直線方程為______.(請用一般式表示)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,,,的對邊分別為,,,已知.(1)判斷的形狀;(2)若,,求.18.如圖,在直四棱柱中,底面為等腰梯形,,,,,??分別是??的中點.(1)證明:直線平面;(2)求直線與面所成角的大?。唬?)求二面角的平面角的余弦值.19.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調遞增區(qū)間.20.已知函數(shù).(1)求函數(shù)的值域和單調減區(qū)間;(2)已知為的三個內角,且,,求的值.21.如圖,在直角梯形中,,,,,記,.(1)用,表示和;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

求得圓的方程和直線方程以及,利用三角換元假設,利用點到直線距離公式和三角函數(shù)知識可求得,代入三角形面積公式可求得結果.【詳解】由題意知,圓的方程為:,直線方程為:,即設點到直線的距離:,其中當時,本題正確選項:【點睛】本題考查點到直線距離的最值的求解問題,關鍵是能夠利用三角換元的方式將問題轉化為三角函數(shù)的最值的求解問題.2、D【解析】

由同角三角函數(shù)關系式,先求得,再由余弦定理即可求得的值.【詳解】因為為銳角三角形,由同角三角函數(shù)關系式可得又因為,由余弦定理可得代入可得所以故選:D【點睛】本題考查了同角三角函數(shù)關系式應用,余弦定理求三角形的邊,屬于基礎題.3、D【解析】試題分析:由題意可知x=-4,y=3,r=5,所以.故選D.考點:三角函數(shù)的概念.4、C【解析】試題分析:由韋達定理得,,則,當適當排序后成等比數(shù)列時,必為等比中項,故,.當適當排序后成等差數(shù)列時,必不是等差中項,當是等差中項時,,解得,;當是等差中項時,,解得,,綜上所述,,所以.考點:等差中項和等比中項.5、A【解析】

先由三角形面積公式求出,再由余弦定理得到,再由正弦定理,即可得出結果.【詳解】因為在中,,,其面積為,所以,因此,所以,所以,由正弦定理可得:,所以.故選A【點睛】本題主要考查解三角形,熟記正弦定理和余弦定理即可,屬于基礎題型.6、A【解析】

先利用基本不等求出的最小值,然后根據(jù)恒成立,可得,再求出a的范圍.【詳解】因為正實數(shù)x,y滿足,,當且僅當,即時取等號,恒成立,所以只需,,,的取值范圍為,故選:A.【點睛】本題主要考查不等式恒成立問題以及基本不等式求最值,解題時注意“一正、二定、三相等”的應用,本題屬于中檔題.7、B【解析】

兩直線平行應該滿足,利用系數(shù)關系及可解得m.【詳解】兩直線平行,可得(舍去).選B.【點睛】兩直線平行的一般式對應關系為:,若是已知斜率,則有,截距不相等.8、D【解析】

根據(jù)不等式的性質,結合選項,進行逐一判斷即可.【詳解】因,則當時,;當時,,故A錯誤;因,則或,故B錯誤;因,才有,條件不足,故C錯誤;因,則,則只能是,故D正確.故選:D.【點睛】本題考查不等式的基本性質,需要對不等式的性質非常熟練,屬基礎題.9、A【解析】

由在R上是奇函數(shù)且周期為4可得,即可算出答案【詳解】因為在R上是奇函數(shù),且滿足所以因為當時,所以故選:A【點睛】本題考查的是函數(shù)的奇偶性和周期性,較簡單.10、B【解析】

利用正弦定理化簡,由此求得的值.利用三角形內角和定理和兩角和與差的正弦公式化簡,由此求得的值,進而求得的值.【詳解】利用正弦定理化簡得,所以為銳角,且.由于,所以由得,化簡得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【點睛】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關系式,考查三角形內角和定理,考查兩角和與差的正弦公式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由兩點求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點睛】本題考查直線的斜率,考查直線傾斜角與斜率的關系,是基礎題.12、【解析】因為所以,即不等式的解集為.13、【解析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.14、π【解析】

將直線方程化為斜截式,利用直線斜率與傾斜角的關系求解即可.【詳解】因為x-3所以y=33x-33則tanα=33,α=【點睛】本題主要考查直線的斜率與傾斜角的關系,意在考查對基礎知識的掌握情況,屬于基礎題.15、【解析】

根據(jù)向量夾角公式可求出結果.【詳解】.【點睛】本題考查了向量夾角的運算,牢記平面向量的夾角公式是破解問題的關鍵.16、【解析】

與直線垂直的直線方程可設為,再將點的坐標代入運算即可得解.【詳解】解:與直線l:垂直的直線方程可設為,又該直線過點,則,則,即點且與直線l:垂直的直線方程為,故答案為:.【點睛】本題考查了與已知直線垂直的直線方程的求法,屬基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)為直角三角形或等腰三角形(2)【解析】

(1)由正弦定理和題設條件,得,再利用三角恒等變換的公式,化簡得,進而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【詳解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,則,則或,所以或,所以為直角三角形或等腰三角形.(2)因為,則為等腰三角形,從而,由余弦定理,得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(1)證明見解析(2)(3)【解析】

(1)取的中點,證明為平行四邊形,且,再由三角形中位線證明,最后由線面平行的判定定理證明即可;(2)作交于點,由線面垂直關系得到直線與面所成角為,再根據(jù)是正三角形求解即可;(3)由(2)知,平面,再證明和分別垂直于,求出直線與面所成角為,再求出和的長度即可求解.【詳解】(1)在直四棱柱中,取的中點,連接,,,因為,,且,所以為平行四邊形,所以,又因為?分別是棱?的中點,所以,所以,因為.所以???四點共面,所以平面,又因為平面,所以直線平面.(2)因為,,是棱的中點,所以,為正三角形,取的中點,則,又因為直四棱柱中,平面,所以,所以平面,即直線與面所成角為,所以,即,所以直線與面所成角為.(3)過在平面內作,垂足為,連接.因為面,即,且與相交于點,故且,則為二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值為.【點睛】本題主要考查線面平行的判定、線面角和二面角的求法,考查學生的空間想象能力和對線面關系的掌握,屬于中檔題.19、(1)θ(2)最小正周期為π;單調遞增區(qū)間為[kπ,kπ],k∈Z【解析】

(1)計算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時θ的值;

(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調遞增區(qū)間.【詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調遞增區(qū)間為[kπ,kπ],k∈Z.【點睛】本題考查了平面向量的數(shù)量積計算問題,也考查了三角函數(shù)的圖象與性質的應用問題,是基礎題.20、(1),;(2).【解析】

(1)將函數(shù)化簡,利用三角函數(shù)的取值范圍的單調性得到答案.(2)通過函數(shù)計算,,再計算代入數(shù)據(jù)得到答案.【詳解】(1)∵且∴故所求值域為由得:所求減區(qū)間:;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論