甘肅省蘭州市市區(qū)片2022-2023學年數(shù)學高一第二學期期末綜合測試模擬試題含解析_第1頁
甘肅省蘭州市市區(qū)片2022-2023學年數(shù)學高一第二學期期末綜合測試模擬試題含解析_第2頁
甘肅省蘭州市市區(qū)片2022-2023學年數(shù)學高一第二學期期末綜合測試模擬試題含解析_第3頁
甘肅省蘭州市市區(qū)片2022-2023學年數(shù)學高一第二學期期末綜合測試模擬試題含解析_第4頁
甘肅省蘭州市市區(qū)片2022-2023學年數(shù)學高一第二學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.(2016高考新課標III,理3)已知向量,則ABC=A.30 B.45 C.60 D.1202.在中,角A,B,C的對邊分別為a,b,c.若,則一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形3.如圖,已知四面體為正四面體,分別是中點.若用一個與直線垂直,且與四面體的每一個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為().A. B. C. D.4.甲、乙、丙三人隨機排成一排,乙站在中間的概率是()A. B. C. D.5.已知平面內(nèi),,,且,則的最大值等于()A.13 B.15 C.19 D.216.的內(nèi)角的對邊分別為成等比數(shù)列,且,則等于()A. B. C. D.7.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為()A. B. C. D.8.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過1min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?精確到0.1km)()A.11.4 B.6.6C.6.5 D.5.69.“是與的等差中項”是“是與的等比中項”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設(shè)公差不為零的等差數(shù)列an的前n項和為Sn.若a2+A.10 B.11 C.12 D.13二、填空題:本大題共6小題,每小題5分,共30分。11.一船自西向東勻速航行,上午10時到達一座燈塔的南偏西距塔64海里的處,下午2時到達這座燈塔的東南方向的處,則這只船的航行速度為__________海里/小時.12.平面四邊形如圖所示,其中為銳角三角形,,,則_______.13.已知遞增數(shù)列共有項,且各項均不為零,,如果從中任取兩項,當時,仍是數(shù)列中的項,則數(shù)列的各項和_____.14.圓臺兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.15.已知函數(shù)fx=Asin16.設(shè)向量滿足,,,.若,則的最大值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系xOy中,已知點,,,.(1)①證明:;②證明:存在點P使得.并求出P的坐標;(2)過C點的直線將四邊形ABCD分成周長相等的兩部分,產(chǎn)生的另一個交點為E,求點E的坐標.18.如圖,在平面直角坐標系中,點為單位圓與軸正半軸的交點,點為單位圓上的一點,且,點沿單位圓按逆時針方向旋轉(zhuǎn)角后到點(1)當時,求的值;(2)設(shè),求的取值范圍.19.在銳角三角形中,分別是角的對邊,且.(1)求角的大小;(2)若,求的取值范圍.20.在中,內(nèi)角、、的對邊分別為、、,且.(1)求角的大??;(2)若,求的最大值及相應(yīng)的角的余弦值.21.在平面直角坐標系中,已知曲線的方程是(,).(1)當,時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:由題意,得,所以,故選A.【考點】向量的夾角公式.【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質(zhì)知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題.2、D【解析】

根據(jù)正弦定理得到,計算得到答案.【詳解】,則,即.故或,即.故選:.【點睛】本題考查了根據(jù)正弦定理判斷三角形形狀,意在考查學生的應(yīng)用能力.3、A【解析】

通過補體,在正方體內(nèi)利用截面為平行四邊形,有,進而利用基本不等式可得解.【詳解】補成正方體,如圖.∴截面為平行四邊形,可得,又且可得當且僅當時取等號,選A.【點睛】本題主要考查了線面的位置關(guān)系,截面問題,考查了空間想象力及基本不等式的應(yīng)用,屬于難題.4、B【解析】

先求出甲、乙、丙三人隨機排成一排的基本事件的個數(shù),再求出乙站在中間的基本事件的個數(shù),再求概率即可.【詳解】解:三個人排成一排的所有情況有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6種,乙在中間有2種,所以乙在中間的概率為,故選B.【點睛】本題考查了古典概型,屬基礎(chǔ)題.5、A【解析】

令,,將,表示成,,即可將表示成,展開可得:,再利用基本不等式即可求得其最大值.【詳解】令,,則又,所以當且僅當時,等號成立.故選:A【點睛】本題主要考查了平面向量基本定理的應(yīng)用及利用基本不等式求最值,考查轉(zhuǎn)化能力及計算能力,屬于難題.6、B【解析】

成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【詳解】解:成等比數(shù)列,,又,,則故選B.【點睛】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計算能力,屬于中檔題.7、A【解析】

由且,易知動點的軌跡為以為鄰邊的平行四邊形的內(nèi)部(含邊界),在中,由,利用余弦定理求得邊,再由和,求得內(nèi)切圓的半徑,從而得到,再由動點的軌跡所覆蓋的面積得解.【詳解】因為且,根據(jù)向量加法的平行四邊形運算法則,所以動點的軌跡為以為鄰邊的平行四邊形的內(nèi)部(含邊界),因為在中,,所以由余弦定理得:,所以,即,解得:,,所以.設(shè)的內(nèi)切圓的半徑為,所以所以.所以.所以動點的軌跡所覆蓋的面積為:.故選:A【點睛】本題主要考查了動點軌跡所覆蓋的面積的求及正弦定理,余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.8、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航線離山頂h=×sin75°≈11.4(km).∴山高為18-11.4=6.6(km).選B.9、A【解析】

根據(jù)等差中項和等比中項的定義,結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】若是與的等差中項,則,若是與的等比中項,則,則“是與的等差中項”是“是與的等比中項”的充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差中項和等比中項的定義求出的值是解決本題的關(guān)鍵.10、C【解析】

由等差數(shù)列的前n項和公式Sn=n(a1+an)【詳解】∵S13=117,∴13a1+a132=117,∴a1【點睛】本題考查等差數(shù)列的性質(zhì)求和前n項和公式及等差數(shù)列下標和的性質(zhì),屬于基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由,行駛了4小時,這只船的航行速度為海里/小時.【點睛】本題為解直角三角形應(yīng)用題,利用直角三角形邊角關(guān)系表示出兩點間的距離,在用輔助角公式變形求值,最后利用速度公式求出結(jié)果.12、.【解析】

由二倍角公式求出,然后用余弦定理求得,再由余弦定理求.【詳解】由題意,在中,,在中,,即,解得,或.若,則,,不合題意,舍去,所以.故答案為:.【點睛】本題考查余弦的二倍角公式,考查余弦定理.掌握余弦定理是解題關(guān)鍵.13、【解析】

∵當時,仍是數(shù)列中的項,而數(shù)列是遞增數(shù)列,∴,所以必有,,利用累加法可得:,故,得,故答案為.點睛:本題主要考查了數(shù)列的求和,解題的關(guān)鍵是單調(diào)性的利用以及累加法的運用,有一定難度;根據(jù)題中條件從中任取兩項,當時,仍是數(shù)列中的項,結(jié)合遞增數(shù)列必有,,利用累加法可得結(jié)果.14、63【解析】

首先畫出軸截面,然后結(jié)合圓臺的性質(zhì)和軸截面整理計算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點睛】本題主要考查圓臺的空間結(jié)構(gòu)特征及相關(guān)元素的計算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.15、f【解析】分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f詳解:根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得A=2,又∵函數(shù)的周期34T=5π將點(5π12,2)代入,得:2=2sin所以fx的解析式是f點睛:本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識點,屬于中檔題.16、【解析】

令,計算出模的最大值即可,當與同向時的模最大.【詳解】令,則,因為,所以當,,因此當與同向時的模最大,【點睛】本題主要考查了向量模的計算,以及二次函數(shù)在給定區(qū)間上的最值.整體換元的思想,屬于較的難題,在解二次函數(shù)的問題時往往結(jié)合圖像、開口、對稱軸等進行分析.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①見解析;②見解析,;(2).【解析】

(1)①利用夾角公式可得;②由條件知點為四邊形外接圓的圓心,根據(jù),可得,四邊形外接圓的圓心為的中點,然后求出點的坐標;(2)根據(jù)條件可得,然后設(shè)的坐標為,根據(jù),可得的坐標.【詳解】(1)①,,,,,,,,,,;②由知,點為四邊形外接圓的圓心,,,,,四邊形外接圓的圓心為的中點,點的坐標為;(2)由兩點間的距離公式可得,,,,過點的直線將四邊形分成周長相等的兩部分,,設(shè)的坐標為,則,,,,點的坐標為.【點睛】本題考查向量的夾角公式、向量相等、向量的運算性質(zhì)、兩點間的距離公式等,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.18、(1);(2)【解析】

(1)由三角函數(shù)的定義得出,通過當時,,,進而求出的值;(2)利用三角恒等變換的公式化簡得,得出,進而得到的取值范圍.【詳解】(1)由三角函數(shù)的定義,可得當時,,即,所以.(2)因為,所以,由三角恒等變換的公式,化簡可得:,因為,所以,即的取值范圍為.【點睛】本題主要考查了任意角的三角函數(shù)的定義,兩角和與差的正、余弦函數(shù)的公式的應(yīng)用,以及正弦函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的定義與性質(zhì),以及兩角和與差的三角函數(shù)的運算公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、(1);(2)【解析】

(1)利用正弦定理邊化角,可整理求得,根據(jù)三角形為銳角三角形可確定的取值;(2)利用正弦定理可將轉(zhuǎn)化為,利用兩角和差正弦公式、輔助角公式整理得到,根據(jù)的范圍可求得正弦型函數(shù)的值域,進而得到所求取值范圍.【詳解】(1)由正弦定理得:為銳角三角形,,即(2)由正弦定理得:為銳角三角形,,即【點睛】本題考查正弦定理邊化角的應(yīng)用、邊長之和的范圍的求解問題;求解邊長之和范圍問題的關(guān)鍵是能夠利用正弦定理將問題轉(zhuǎn)化為三角函數(shù)值域的求解問題;易錯點是在求解三角函數(shù)值域時,忽略角的范圍限制,造成求解錯誤.20、(1)(2)的最大值為,此時【解析】

(1)由正弦定理邊角互化思想結(jié)合內(nèi)角和定理、誘導公式可得出的值,結(jié)合角的取值范圍可得出角的大??;(2)由正弦定理得出,,然后利用三角恒等變換思想將轉(zhuǎn)化為關(guān)于角的三角函數(shù),可得出的值,并求出的值.【詳解】(1)由正弦定理得,即,從而有,即,由得,因為,所以;(2)由正弦定理可知,,則有,,,其中,因為,所以,所以當時,取得最大值,此時,所以,的最大值為,此時.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查內(nèi)角和定理、誘導公式,以及三角形中最值的求解,求解時常利用正弦定理將邊轉(zhuǎn)化為角的三角函數(shù)來求解,解題時要充分利用三角恒等變換思想將三角函數(shù)解析式化簡,考查運算求解能力,屬于中等題.21、(1)4;(2).【解析】

(1)當,時,曲線的方程是,對絕對值內(nèi)的數(shù)進行討論,得到四條直線圍成一個菱形,并求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論