![江西省贛縣三中2022-2023學年數(shù)學高一下期末經典模擬試題含解析_第1頁](http://file4.renrendoc.com/view/950af1371320f9a1427fece414618540/950af1371320f9a1427fece4146185401.gif)
![江西省贛縣三中2022-2023學年數(shù)學高一下期末經典模擬試題含解析_第2頁](http://file4.renrendoc.com/view/950af1371320f9a1427fece414618540/950af1371320f9a1427fece4146185402.gif)
![江西省贛縣三中2022-2023學年數(shù)學高一下期末經典模擬試題含解析_第3頁](http://file4.renrendoc.com/view/950af1371320f9a1427fece414618540/950af1371320f9a1427fece4146185403.gif)
![江西省贛縣三中2022-2023學年數(shù)學高一下期末經典模擬試題含解析_第4頁](http://file4.renrendoc.com/view/950af1371320f9a1427fece414618540/950af1371320f9a1427fece4146185404.gif)
![江西省贛縣三中2022-2023學年數(shù)學高一下期末經典模擬試題含解析_第5頁](http://file4.renrendoc.com/view/950af1371320f9a1427fece414618540/950af1371320f9a1427fece4146185405.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.2.已知,∥則()A.6 B. C.-6 D.3.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某多面體的三視圖,則此幾何體的表面積為()A. B. C. D.4.矩形中,,若在該矩形內隨機投一點,那么使得的面積不大于3的概率是()A. B. C. D.5.過點的圓的切線方程是()A. B.或C.或 D.或6.已知為等差數(shù)列,,,則等于().A. B. C. D.7.在中,角均為銳角,且,則的形狀是()A.直角三角形 B.銳角三角形 C.鈍角三角形 D.等腰三角形8.下圖所示的幾何體是由一個圓柱中挖去一個以圓柱的上底面為底面,下底面圓心為質點的圓錐面得到,現(xiàn)用一個垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)9.在1和19之間插入個數(shù),使這個數(shù)成等差數(shù)列,若這個數(shù)中第一個為,第個為,當取最小值時,的值是()A.4 B.5 C.6 D.710.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,,,則______________.12.______.13.由正整數(shù)組成的數(shù)列,分別為遞增的等差數(shù)列、等比數(shù)列,,記,若存在正整數(shù)()滿足,,則__________.14.在數(shù)列{}中,,則____.15.的值為__________.16.某公司當月購進、、三種產品,數(shù)量分別為、、,現(xiàn)用分層抽樣的方法從、、三種產品中抽出樣本容量為的樣本,若樣本中型產品有件,則的值為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知,求的值(2)若,,且,,求的值18.已知函數(shù),且.(1)求常數(shù)及的最大值;(2)當時,求的單調遞增區(qū)間.19.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定3998是否是數(shù)列中的項?20.如圖,已知圓:,點.(1)求經過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.21.已知點,圓.(1)求過點且與圓相切的直線方程;(2)若直線與圓相交于,兩點,且弦的長為,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】關于的不等式,即的解集是,∴不等式,可化為,解得,∴所求不等式的解集是,故選C.2、A【解析】
根據(jù)向量平行(共線),它們的坐標滿足的關系式,求出的值.【詳解】,且,,解得,故選A.【點睛】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.3、B【解析】
作出多面體的直觀圖,將各面的面積相加可得出該多面積的表面積.【詳解】由三視圖得知該幾何體的直觀圖如下圖所示:由直觀圖可知,底面是邊長為的正方形,其面積為;側面是等腰三角形,且底邊長,底邊上的高為,其面積為,且;側面是直角三角形,且為直角,,,其面積為,,的面積為;側面積為等腰三角形,底邊長,,底邊上的高為,其面積為.因此,該幾何體的表面積為,故選:B.【點睛】本題考查幾何體的三視圖以及幾何體表面積的計算,再利用三視圖求幾何體的表面積時,要將幾何體的直觀圖還原,并判斷出各個面的形狀,結合圖中數(shù)據(jù)進行計算,考查空間想象能力與計算能力,屬于中等題.4、C【解析】
先求出的點的軌跡(一條直線),然后由面積公式可知時點所在區(qū)域,計算其面積,利用幾何概型概率公式計算概率.【詳解】設到的距離為,,則,如圖,設,則點在矩形內,,,∴所求概率為.故選C.【點睛】本題考查幾何概型概率.解題關鍵是確定符合條件點所在區(qū)域及其面積.5、D【解析】
先由題意得到圓的圓心坐標,與半徑,設所求直線方程為,根據(jù)直線與圓相切,結合點到直線距離公式,即可求出結果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結合點到直線距離公式即可求解,屬于??碱}型.6、B【解析】
利用等差數(shù)列的通項公式,列出方程組,求出首項和公差,由此能求出.【詳解】解:為等差數(shù)列,,,,,,,,,.故選:【點睛】本題考查等差數(shù)列的第20項的求法,是基礎題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.7、C【解析】,又角均為銳角,則,,且中,,的形狀是鈍角三角形,故選C.【方法點睛】本題主要考查利用誘導公式、正弦函數(shù)的單調性以及判斷三角形形狀,屬于中檔題.判斷三角形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內角之間的關系進行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關系進行判斷;(3)根據(jù)余弦定理確定一個內角為鈍角進而知其為鈍角三角形.8、D【解析】
根據(jù)圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉軸時和截面不過旋轉軸時兩種情況,分析截面圖形的形狀,最后綜合討論結果,可得答案.【詳解】根據(jù)題意,當截面過旋轉軸時,圓錐的軸截面為等腰三角形,此時(1)符合條件;當截面不過旋轉軸時,圓錐的軸截面為雙曲線的一支,此時(4)符合條件;故截面圖形可能是(1)(4);故選:D.【點睛】本題考查的知識點是旋轉體,圓錐曲線的定義,關鍵是掌握圓柱與圓錐的幾何特征.9、B【解析】
設等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設等差數(shù)列公差為,則,從而,此時,故,所以,即,當且僅當,即時取“=”,又,解得,所以,所以,故選:B.【點睛】本題主要考查數(shù)列和不等式的綜合運用,需要學生對所學知識融會貫通,靈活運用.10、C【解析】
由題意作出不等式組所表示的平面區(qū)域,將化為,相當于直線的縱截距,由幾何意義可得結果.【詳解】由題意作出其平面區(qū)域,令,化為,相當于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
根據(jù)已知兩項求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項公式進行求解即可.【詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項公式a3=11=1故答案為:1.【點睛】本題主要考查了等比數(shù)列的通項公式,一般利用基本量的思想,屬于基礎題.12、【解析】
,,故答案為.考點:三角函數(shù)誘導公式、切割化弦思想.13、262【解析】
根據(jù)條件列出不等式進行分析,確定公比、、的范圍后再綜合判斷.【詳解】設等比數(shù)列公比為,等差數(shù)列公差為,因為,,所以;又因為,分別為遞增的等差數(shù)列、等比數(shù)列,所以且;又時顯然不成立,所以,則,即;因為,,所以;因為,所以;由可知:,則,;又,所以,則有根據(jù)可解得符合條件的解有:或;當時,,解得不符,當時,解得,符合條件;則.【點睛】本題考查等差等比數(shù)列以及數(shù)列中項的存在性問題,難度較難.根據(jù)存在性將變量的范圍盡量縮小,通過不等式確定參變的取值范圍,然后再去確定符合的解,一定要注意帶回到原題中驗證,看是否滿足.14、1【解析】
直接利用等比數(shù)列的通項公式得答案.【詳解】解:在等比數(shù)列中,由,公比,得.故答案為:1.【點睛】本題考查等比數(shù)列的通項公式,是基礎題.15、【解析】
由反余弦可知,由此可計算出的值.【詳解】.故答案為:.【點睛】本題考查正切值的計算,涉及反余弦的應用,求出反余弦值是關鍵,考查計算能力,屬于基礎題.16、.【解析】
利用分層抽樣每層抽樣比和總體的抽樣比相等,列等式求出的值.【詳解】在分層抽樣中,每層抽樣比和總體的抽樣比相等,則有,解得,故答案為:.【點睛】本題考查分層抽樣中的相關計算,解題時要充分利用各層抽樣比與總體抽樣比相等這一條件列等式求解,考查運算求解能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用誘導公式化簡可得:原式,再分子、分母同除以可得:原式,將代入計算得解.(2)將整理為:,利用兩角差的正弦公式整理得:,根據(jù)已知求出、即可得解.【詳解】解:(1)原式;(2)因為,,所以.又因為,所以,所以.于是.【點睛】本題主要考查了誘導公式及轉化思想,還考查了兩角差的正弦公式及同角三角函數(shù)基本關系,考查計算能力,屬于中檔題.18、(1),(2)遞增區(qū)間為.【解析】
(1)由二倍角公式降冪,再由求出,然后由兩角和的余弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結合余弦函數(shù)單調性可得最大值;(2)由(1)結合余弦函數(shù)性質可得增區(qū)間.【詳解】(1),由得,,即.∴,當時,即時,.(2)由,得,又,所以,所以遞增區(qū)間為.【點睛】本題考查二倍角公式,考查兩角和的余弦公式,考查余弦函數(shù)的性質.三角函數(shù)問題一般都要由三角恒等變換化為一個角的一個三角函數(shù)形式,然后利用正弦函數(shù)或余弦函數(shù)性質求解.19、(1)(2)第1000項【解析】
(1)由題意有,解方程組即得數(shù)列的通項公式;(2)假設3998是數(shù)列中的項,有,得,即可判斷得解.【詳解】解:(1)設數(shù)列的公差為,由題意有,解得,則數(shù)列的通項公式為.(2)假設3998是數(shù)列中的項,有,得,故3998是數(shù)列中的第1000項.【點睛】本題主要考查等差數(shù)列基本量的計算,考查某一項是否是等差數(shù)列中的項的判定,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、(1)或;(2).【解析】試題分析:(1)設直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關系確定最值試題解析:(1)當過點直線的斜率不存在時,其方程為,滿足條件.當切線的斜率存在時,設:,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度的取值范圍為.21、(1)或;(2).【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河源道路運輸從業(yè)資格考試系統(tǒng)
- 2024-2025學年新教材高中語文第六單元課時優(yōu)案5拿來主義習題含解析新人教版必修上冊
- 光學實驗室建設方案
- 華師大版數(shù)學八年級下冊《平面直角坐標系》聽評課記錄
- 高中老師工作總結
- 個人培訓研修計劃
- 實驗教學聽評課記錄
- 餐飲合伙人合同范本
- 應急照明施工合同范本
- 華中農業(yè)大學《礦井熱害防治》2023-2024學年第二學期期末試卷
- 部編版語文小學五年級下冊第一單元集體備課(教材解讀)
- 建設工程施工合同糾紛處理課件
- 標準太陽能光譜數(shù)據(jù)
- 小學校長新學期工作思路3篇
- 四年級下冊數(shù)學應用題專項練習
- 煤礦安全生產事故風險辨識評估和應急資源調查報告
- 橋梁橋臺施工技術交底(三級)
- LNG液化天然氣泄漏事故的危害與處置ppt課件
- 醋酸鈉化學品安全技術說明書MSDS
- 頂進法施工用鋼筋溷凝土管結構配筋手冊
- (完整版)新人教版八年級下冊英語單詞表
評論
0/150
提交評論