版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學生中隨機抽取25名學生進行問卷調查,則應抽取的女生人數(shù)為()A.5 B.10 C.15 D.202.將兩個長、寬、高分別為5,4,3的長方體壘在一起,使其中兩個面完全重合,組成一個大長方體,則大長方體的外接球表面積的最大值為()A. B. C. D.3.在面積為S的平行四邊形ABCD內任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.4.向量,,若,則()A.2 B. C. D.5.某學校禮堂有30排座位,每排有20個座位,一次心理講座時禮堂中坐滿了學生,會后為了了解有關情況,留下座位號是15的30名學生,這里運用的抽樣方法是()A.抽簽法 B.隨機數(shù)法 C.系統(tǒng)抽樣 D.分層抽樣6.直線在軸上的截距為()A.2 B.﹣3 C.﹣2 D.37.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.8.設是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.9.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.10.已知底面邊長為1,側棱長為2的正四棱柱的各頂點均在同一個球面上,則該球的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角滿足,則_____12.若,則=_________________13.在中,角的對邊分別為,若,則_______.(僅用邊表示)14.已知球的表面積為4,則該球的體積為________.15.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.16.函數(shù)的單調遞增區(qū)間為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)從2,3,8,9中任取兩個不同的數(shù)字,分別記為,求為整數(shù)的概率?(2)兩人相約在7點到8點在某地會面,先到者等候另一個人20分鐘方可離去.試求這兩人能會面的概率?18.已知角的頂點在原點,始邊與軸的非負半軸重合,終邊上一點的坐標是.(1)求;(2)求;19.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.20.如圖,在直角梯形中,,,,,記,.(1)用,表示和;(2)求的值.21.設數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)若,為數(shù)列位的前項和,求;(3)在(2)的條件下,是否存在自然數(shù),使得對一切恒成立?若存在,求出的值;若不存在,說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
利用分層抽樣的定義和方法求解即可.【詳解】設應抽取的女生人數(shù)為,則,解得.故選B【點睛】本題主要考查分層抽樣的定義及方法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2、B【解析】
要計算長方體的外接球表面積就是要求出外接球的半徑,根據(jù)長方體的對角線是外接球的直徑這一性質,就可以求出外接球的表面積,分類討論:(1)長寬的兩個面重合;(2)長高的兩個面重合;(3)高寬兩個面重合,分別計算出新長方體的對角線,然后分別計算出外接球的表面積,最后通過比較即可求出最大值.【詳解】(1)當長寬的兩個面重合,新的長方體的長為5,寬為4,高為6,對角線長為:,所以大長方體的外接球表面積為;(2)當長高兩個面重合,新的長方體的長5,寬為8,高為3,對角線長為:,所以大長方體的外接球表面積為;(3)當寬高兩個面重合,新的長方體的長為10,寬為4,高為3,對角線長為:,所以大長方體的外接球表面積為,顯然大長方體的外接球表面積的最大值為,故本題選B.【點睛】本題考查了長方體外接球的半徑的求法,考查了分類討論思想,考查了球的表面積計算公式,考查了數(shù)學運算能力.3、A【解析】
轉化條件求出滿足要求的P點的范圍,求出面積比即可得解.【詳解】如圖,設P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【點睛】本題考查了幾何概型的概率計算,屬于基礎題.4、C【解析】試題分析:,,得得,故選C.考點:向量的垂直運算,向量的坐標運算.5、C【解析】抽名學生分了組(每排為一組),每組抽一個,符合系統(tǒng)抽樣的定義故選6、B【解析】
令,求出值則是截距?!驹斀狻恐本€方程化為斜截式為:,時,,所以,在軸上的截距為-3?!军c睛】軸上的截距:即令,求出值;同理軸上的截距:即令,求出值7、B【解析】
利用余弦定理化簡后可得,再利用正弦定理把邊角關系化為角的三角函數(shù)的關系式,從而得到,因此,結合的范圍可得所求的取值范圍.【詳解】,因為為銳角三角形,所以,,,故,選B.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.8、B【解析】
分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當平面時,三棱錐體積最大,然后進行計算可得.詳解:如圖所示,點M為三角形ABC的中心,E為AC中點,當平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有故選B.點睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當平面時,三棱錐體積最大很關鍵,由M為三角形ABC的重心,計算得到,再由勾股定理得到OM,進而得到結果,屬于較難題型.9、D【解析】由題意,當輸入,則;;;,終止循環(huán),則輸出,所以,故選D.10、C【解析】
根據(jù)題意可知所求的球為正四棱柱的外接球,根據(jù)正四棱柱的特點利用勾股定理可求得外接球半徑,代入球的體積公式求得結果.【詳解】由題意可知所求的球為正四棱柱的外接球底面正方形對角線長為:外接球半徑外接球體積本題正確選項:【點睛】本題考查正棱柱外接球體積的求解問題,關鍵是能夠根據(jù)正棱柱的特點確定球心位置,從而利用勾股定理求得外接球半徑.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用誘導公式以及兩角和與差的三角公式,化簡求解即可.【詳解】解:角滿足,可得
則.
故答案為:.【點睛】本題考查兩角和與差的三角公式,誘導公式的應用,考查計算能力,是基礎題.12、【解析】分析:由二倍角公式求得,再由誘導公式得結論.詳解:由已知,∴.故答案為.點睛:三角函數(shù)恒等變形中,公式很多,如誘導公式、同角關系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個公式后選用哪個公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關系,通過這個關系都能選用恰當?shù)墓剑?3、【解析】
直接利用正弦定理和三角函數(shù)關系式的變換的應用求出結果.【詳解】由正弦定理,結合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理余弦定理和三角形面積的應用,主要考察學生的運算能力和轉換能力,屬于基礎題型.14、【解析】
先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設球半徑為,則,解得,所以【點睛】本題考查球的面積、體積計算,屬于基礎題.15、【解析】
把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點睛】本題主要考查了等差數(shù)列的性質.考查了學生創(chuàng)造性思維和解決問題的能力.16、【解析】
令,解得的范圍即為所求的單調區(qū)間.【詳解】令,,解得:,的單調遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調區(qū)間的求解問題,關鍵是能夠采用整體對應的方式,結合正弦函數(shù)的單調區(qū)間來進行求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分別求出基本事件總數(shù)及為整數(shù)的事件數(shù),再由古典概型概率公式求解;(2)建立坐標系,找出會面的區(qū)域,用會面的區(qū)域面積比總區(qū)域面積得答案.【詳解】(1)所有的基本事件共有4×3=12個,記事件A={為整數(shù)},因為,則事件A包含的基本事件共有2個,∴p(A)=;(2)以x、y分別表示兩人到達時刻,則.兩人能會面的充要條件是.建立直角坐標系如下圖:∴P=.∴這兩人能會面的概率為.【點睛】本題考查古典概型與幾何概型概率的求法,考查數(shù)學轉化思想方法,是基礎題.18、(1),(2)【解析】
(1)求得點到原點的距離,根據(jù)三角函數(shù)的定義求值;(2)同(1)可求出,然后用誘導公式化簡,再代入值計算.【詳解】(1)(2),為第四象限,【點睛】本題考查三角函數(shù)的定義,考查誘導公式,屬于基礎題.19、證明見解析【解析】
先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點,,,平面,平面,,又,平面,又平面,平面⊥平面.【點睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應用,考查垂直關系的簡單證明.20、(1),;(2)1【解析】
(1)根據(jù)向量的線性運算可直接求解得到結果;(2)將所求數(shù)量積轉化為,根據(jù)數(shù)量積運算性質求得結果.【詳解】(1),(2)由(1)得:【點睛】本題考查利用基底表示向量、平面向量數(shù)量積的求解問題;關鍵是能夠熟練掌握平面向量的線性運算和數(shù)量積運算的性質.21、(1)(2)(3)【解析】
(1)根據(jù)題干可推導得到,進而得到數(shù)列是以為首項,為公比的等比數(shù)列,由等比數(shù)列的通項公式得到結果;(2)由錯位相減的方法得到結
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度公益崗位用工合作協(xié)議3篇
- 2025年度電商平臺會員消費返利協(xié)議3篇
- 2025年度廢塑料瓶回收與環(huán)保瓶蓋生產合同樣板3篇
- 二零二五年度農機智能化作業(yè)合同書3篇
- 二零二五年度電子信息產品開發(fā)合作協(xié)議書2篇
- 二零二五年度消防安全風險評估與整改方案協(xié)議3篇
- 農村土地經(jīng)營權抵押貸款擔保合同
- 2025年度醫(yī)藥研發(fā)人員競業(yè)禁止勞動合同書3篇
- 2025年度餐飲業(yè)食品安全責任書3篇
- 二零二五年度歷史文化名城拆遷房產分割與文物保護合同3篇
- 多工步組合機床的plc控制系統(tǒng)設計
- 常見酸和堿說課課件
- 三年級下冊英語說課稿-《Lesson 11 What Do They Eat》|冀教版(三起)
- 商品和服務稅收分類編碼(開票指引)
- 智能嬰兒床的設計與實現(xiàn)
- 中國天眼之父南仁東
- 《膽囊結石的護理》PPT
- 安徽云帆藥業(yè)有限公司原料藥生產項目環(huán)境影響報告
- 藥品質量受權人管理規(guī)程
- 校本課程之《紅樓夢詩詞曲賞析》教案
- 熱動復習題材料熱力學與動力學
評論
0/150
提交評論