云南省大姚一中2023年數(shù)學(xué)高一下期末考試試題含解析_第1頁
云南省大姚一中2023年數(shù)學(xué)高一下期末考試試題含解析_第2頁
云南省大姚一中2023年數(shù)學(xué)高一下期末考試試題含解析_第3頁
云南省大姚一中2023年數(shù)學(xué)高一下期末考試試題含解析_第4頁
云南省大姚一中2023年數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等差數(shù)列的前項(xiàng)和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.192.對一切實(shí)數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.3.不等式所表示的平面區(qū)域是()A. B.C. D.4.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移5.已知點(diǎn),則向量在方向上的投影為()A. B. C. D.6.等比數(shù)列,…的第四項(xiàng)等于(

)A.-24 B.0 C.12 D.247.若,則t=()A.32 B.23 C.14 D.138.函數(shù)f(x)=4A.2kπ+π6C.2kπ+π129.已知一扇形的周長為,圓心角為,則該扇形的面積為()A. B. C. D.10.在△ABC中,已知,P為線段AB上的點(diǎn),且的最大值為()A.3B.4C.5D.6二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.12.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調(diào)和數(shù)列”,已知正項(xiàng)數(shù)列為“調(diào)和數(shù)列”,且,則的最大值是__________.13.已知平面向量,,滿足:,且,則的最小值為____.14.某幼兒園對兒童記憶能力的量化評價(jià)值和識圖能力的量化評價(jià)值進(jìn)行統(tǒng)計(jì)分析,得到如下數(shù)據(jù):468103568由表中數(shù)據(jù),求得回歸直線方程中的,則.15.已知等邊,為中點(diǎn),若點(diǎn)是所在平面上一點(diǎn),且滿足,則__________.16.已知函數(shù),則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求不等式的解集;(2)若關(guān)于的不等式能成立,求實(shí)數(shù)的取值范圍.18.已知,且(1)求的值;(2)求的值.19.如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點(diǎn)M為AB的中點(diǎn),將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,(1)證明:AB⊥PC;(2)求PD與平面ABCD所成角的正弦值(3)在線段PD上是否存在點(diǎn)N,使得PB∥平面MC?若存在,請找出N點(diǎn)的位置;若不存在,請說明理由20.在ΔABC中,角A,B,C,的對邊分別是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在線段BC上,且BD=DE=EC,AE=2321.已知函數(shù).(1)求函數(shù)圖象的對稱軸方程;(2)若對于任意的,恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.2、A【解析】

時(shí),恒成立.時(shí),原不等式等價(jià)于.由的最小值是2,可得,即.選A.3、D【解析】

根據(jù)二元一次不等式組表示平面區(qū)域進(jìn)行判斷即可.【詳解】不等式組等價(jià)為或則對應(yīng)的平面區(qū)域?yàn)镈,

故選:D.【點(diǎn)睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).4、B【解析】

先利用誘導(dǎo)公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【點(diǎn)睛】本題考查誘導(dǎo)公式、三角函數(shù)的平移變換,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意平移是針對自變量而言的.5、A【解析】

,,向量在方向上的投影為,故選A.6、A【解析】由x,3x+3,6x+6成等比數(shù)列得選A.考點(diǎn):該題主要考查等比數(shù)列的概念和通項(xiàng)公式,考查計(jì)算能力.7、B【解析】

先計(jì)算得到,再根據(jù)得到等式解得答案.【詳解】故答案選B【點(diǎn)睛】本題考查了向量的計(jì)算,意在考查學(xué)生對于向量運(yùn)算法則的靈活運(yùn)用及計(jì)算能力.8、D【解析】

解不等式4sin【詳解】因?yàn)閒(x)=4所以4sinxcos解得kπ+π故選:D【點(diǎn)睛】本題主要考查三角函數(shù)定義域的求法,考查解三角不等式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9、C【解析】

根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與弧長公式即可求出扇形的弧長與半徑,進(jìn)而根據(jù)扇形的面積公式即可求解.【詳解】設(shè)扇形的弧長為,半徑為,扇形的圓心角的弧度數(shù)是.

則由題意可得:.

可得:,解得:,.可得:故選:C【點(diǎn)睛】本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,以及考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】試題分析:在中,設(shè),∵,,即,∴,∵,∴,即.∵,,∴,,∴.根據(jù)直角三角形可得,,,∴,以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系可得,為線段上的一點(diǎn),則存在實(shí)數(shù)使得.設(shè),,則,且,∴,可得則,即,解得,故所求的最大值為:,故選A.考點(diǎn):三角形的內(nèi)角和定理,兩角和的正弦公式,基本不等式求解最值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【詳解】因?yàn)榈拿娣e為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因?yàn)闉殇J角三角形,所以,所以,則,即.故的周長的取值范圍是.【點(diǎn)睛】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯(cuò)點(diǎn)注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.12、1【解析】因?yàn)閿?shù)列是“調(diào)和數(shù)列”,所以,即數(shù)列是等差數(shù)列,所以,,所以,,當(dāng)且僅當(dāng)時(shí)等號成立,因此的最大值為1.點(diǎn)睛:本題考查創(chuàng)新意識,關(guān)鍵是對新定義的理解與轉(zhuǎn)化,由“調(diào)和數(shù)列”的定義及已知是“調(diào)和數(shù)列”,得數(shù)列是等差數(shù)列,從而利用等差數(shù)列的性質(zhì)可化簡已知數(shù)列的和,結(jié)合基本不等式求得最值.本題難度不大,但考查的知識較多,要熟練掌握各方面的知識與方法,才能正確求解.13、-1【解析】

,,,由經(jīng)過向量運(yùn)算得,知點(diǎn)在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設(shè)是中點(diǎn),則,∵,∴,即,,記,則點(diǎn)在以為圓心,1為半徑的圓上,記,,注意到,因此當(dāng)與反向時(shí),最小,∴.∴最小值為-1.故答案為-1.【點(diǎn)睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點(diǎn)軌跡(讓表示的有向線段的起點(diǎn)都是原點(diǎn))是圓,然后分析出只有最小時(shí),才可能最?。畯亩玫浇忸}方法.14、-0.1【解析】

分別求出和的均值,代入線性回歸方程即可.【詳解】由表中數(shù)據(jù)易得,,由在直線方程上,可得【點(diǎn)睛】此題考查線性回歸方程形式,表示在回歸直線上代入即可,屬于簡單題目.15、0【解析】

利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【點(diǎn)睛】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意令f(x)=,求出x的值,即可得出f﹣1()的值.【詳解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案為:﹣.【點(diǎn)睛】本題考查了反函數(shù)以及反正弦函數(shù)的應(yīng)用問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(1)或.【解析】

(1)運(yùn)用絕對值的意義,去絕對值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等價(jià)為|x+l|﹣|x﹣m|的最大值,由絕對值不等式的性質(zhì),以及絕對值不等式的解法,可得所求范圍.【詳解】解:(1)由題意可得|x﹣1|+|1x+3|>4,當(dāng)x≥1時(shí),x﹣1+1x+3>4,解得x≥1;當(dāng)x<1時(shí),1﹣x+1x+3>4,解得0<x<1;當(dāng)x時(shí),1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集為(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t時(shí),|t﹣1|+|1t+3|取得最小值,關(guān)于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等價(jià)為|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【點(diǎn)睛】本題考查絕對值不等式的解法和絕對值不等式的性質(zhì)的運(yùn)用,求最值,考查化簡變形能力,以及運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2).【解析】

(1)由條件先求得然后再用二倍角公式求;(2)利用角的變換求出,在根據(jù)的范圍確定的值.【詳解】(1)因?yàn)?所以,所以,所以;(2)因?yàn)?所以因?yàn)?所以,由(1)得,所以=,因?yàn)?所以.【點(diǎn)睛】根據(jù)已知條件求角的步驟:(1)求角的某一個(gè)三角函數(shù)值;(2)確定角的范圍;(3)根據(jù)角的范圍寫出所求的角.在選取函數(shù)時(shí),遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是,選余弦較好;若角的范圍為,選正弦較好.19、(1)證明見解析(2).(3)存在,PN.【解析】

(1)只需證明AB⊥面PMC,即可證明AB⊥PC;(2)由PM⊥面ABCD得∠PDM為PD與平面ABCD所成角,解△PDM即可求得PD與平面ABCD所成角的正弦值.(3)設(shè)DB∩MC=E,連接NE,可得PB∥NE,.即可.【詳解】(1)證明:∵△PAB是邊長為2的等邊三角形,點(diǎn)M為AB的中點(diǎn),∴PM⊥AB.∵ABCD為菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC?面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM為PD與平面ABCD所成角.PM,MD,PDsin∠PMD,即PD與平面ABCD所成角的正弦值為.(3)設(shè)DB∩MC=E,連接NE,則有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.線段PD上存在點(diǎn)N,使得PB∥平面MNC,且PN.【點(diǎn)睛】本題考查了面面垂直的性質(zhì)定理、線面垂直的判定定理、線面角,利用線面平行的性質(zhì)定理確定點(diǎn)N的位置是關(guān)鍵,屬于中檔題..20、(1)32+【解析】

(1)根據(jù)正弦定理化簡邊角關(guān)系式,可整理出余弦定理形式,得到cosB=12;再根據(jù)正弦定理求得sinC,根據(jù)同角三角函數(shù)得到cosC;根據(jù)兩角和差公式求得sinA;(2)設(shè)BD=x,在【詳解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)設(shè)BD=x,則:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【點(diǎn)睛】本題考查正弦定理、余弦定理解三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論