高階導(dǎo)數(shù)與隱函數(shù)課件_第1頁(yè)
高階導(dǎo)數(shù)與隱函數(shù)課件_第2頁(yè)
高階導(dǎo)數(shù)與隱函數(shù)課件_第3頁(yè)
高階導(dǎo)數(shù)與隱函數(shù)課件_第4頁(yè)
高階導(dǎo)數(shù)與隱函數(shù)課件_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§

3.3高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.定義瞬時(shí)速度為路程對(duì)時(shí)間的變化率記作三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù),二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù).二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),例設(shè)求例設(shè)例設(shè)求求例解

求n階導(dǎo)數(shù)時(shí),求出1-3或4階后,不要急于合并,分析結(jié)果的規(guī)律性,寫(xiě)出n階導(dǎo)數(shù).(數(shù)學(xué)歸納法)注意:三、幾個(gè)初等函數(shù)的n階導(dǎo)數(shù)公式例解同理可得二、高階偏導(dǎo)數(shù)的概念與計(jì)算設(shè)z=f(x,y)在域D

內(nèi)存在連續(xù)的偏導(dǎo)數(shù)若這兩個(gè)偏導(dǎo)數(shù)仍存在偏導(dǎo)數(shù),則稱它們是z=f(x,y)的二階偏導(dǎo)數(shù)

.按求導(dǎo)順序不同,有下列四個(gè)二階偏導(dǎo)數(shù):類(lèi)似可以定義更高階的偏導(dǎo)數(shù).例如,z=f(x,y)關(guān)于x的三階偏導(dǎo)數(shù)為則定理.本定理對(duì)n

元函數(shù)的高階混合導(dǎo)數(shù)也成立.(證明略)

例如,對(duì)三元函數(shù)u=f(x,y,z),當(dāng)三階混合偏導(dǎo)數(shù)在點(diǎn)(x,y,z)連續(xù)時(shí),有例.

求函數(shù)解

:的二階偏導(dǎo)數(shù)及說(shuō)明:函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的,故求初等函數(shù)的高階導(dǎo)數(shù)可以選擇方便的求導(dǎo)順序.因?yàn)槌醯群瘮?shù)的偏導(dǎo)數(shù)仍為初等函數(shù),而初等注意:但這一情形并不總成立.思考:設(shè)二階偏導(dǎo)數(shù)連續(xù),證明下列表達(dá)式在極坐標(biāo)系下的形式:§

3.4參數(shù)方程與隱函數(shù)方程微分法一、參數(shù)方程確定的函數(shù)求導(dǎo)二、隱函數(shù)確定的函數(shù)求導(dǎo)一、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)若參數(shù)方程可確定一個(gè)

y

x之間的函數(shù)可導(dǎo),且則時(shí),有時(shí),有(此時(shí)看成x

y的函數(shù))關(guān)系,例.設(shè),且求解:為兩可導(dǎo)函數(shù)之間有聯(lián)系之間也有聯(lián)系稱為相關(guān)變化率二、隱函數(shù)方程確定的函數(shù)求導(dǎo)若由方程可確定y是

x

的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x

的函數(shù),但此隱函數(shù)不能顯化.函數(shù)為隱函數(shù)

.則稱此隱函數(shù)求導(dǎo)方法:

兩邊對(duì)

x

求導(dǎo)(含導(dǎo)數(shù)的方程)例.

求由方程在x=0

處的導(dǎo)數(shù)解:

方程兩邊對(duì)

x

求導(dǎo)得因x=0時(shí)y=0,故確定的隱函數(shù)例對(duì)x

求導(dǎo)兩邊取對(duì)數(shù)解:,求導(dǎo)函數(shù)?下面利用偏導(dǎo)數(shù)來(lái)考慮隱函數(shù)方程確定的函數(shù)求導(dǎo)問(wèn)題.定理1.

設(shè)函數(shù)則方程單值連續(xù)函數(shù)y=f(x),并有連續(xù)(隱函數(shù)求導(dǎo)公式)定理證明從略.①具有連續(xù)的偏導(dǎo)數(shù);的某鄰域內(nèi)可唯一確定一個(gè)在點(diǎn)的某一鄰域內(nèi)滿足②③滿足條件導(dǎo)數(shù)例.驗(yàn)證方程在點(diǎn)(0,0)某鄰域可確定一個(gè)單值可導(dǎo)隱函數(shù)解:

令連續(xù),由定理1可知,①導(dǎo)的隱函數(shù)則②③在x=0

的某鄰域內(nèi)方程存在單值可且求定理2.若函數(shù)的某鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù),則方程在點(diǎn)并有連續(xù)偏導(dǎo)數(shù)定一個(gè)單值連續(xù)函數(shù)z=f(x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論