城市群城際客運(yùn)交通分布預(yù)測方法研究_第1頁
城市群城際客運(yùn)交通分布預(yù)測方法研究_第2頁
城市群城際客運(yùn)交通分布預(yù)測方法研究_第3頁
城市群城際客運(yùn)交通分布預(yù)測方法研究_第4頁
城市群城際客運(yùn)交通分布預(yù)測方法研究_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

城市群城際客運(yùn)交通分布預(yù)測方法研究摘要

隨著城市群的不斷發(fā)展壯大,城際客運(yùn)交通的需求也在不斷增加。針對(duì)城市群內(nèi)城際客運(yùn)交通分布預(yù)測問題,本文提出了一種基于機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘技術(shù)的預(yù)測方法。該方法主要包括數(shù)據(jù)采集和整理、特征提取、模型訓(xùn)練和模型評(píng)估四個(gè)步驟。首先,利用調(diào)查問卷、公開數(shù)據(jù)以及地理信息系統(tǒng)等手段獲取城市群內(nèi)相關(guān)數(shù)據(jù),并進(jìn)行清理和整理。其次,通過特征提取技術(shù)挖掘出對(duì)城際客運(yùn)交通分布具有重要影響的因素,如人口密度、經(jīng)濟(jì)發(fā)展水平等。然后,利用機(jī)器學(xué)習(xí)算法建立城際客運(yùn)交通分布預(yù)測模型,并利用交叉驗(yàn)證等技術(shù)對(duì)模型進(jìn)行評(píng)估。最后,通過實(shí)際案例驗(yàn)證了該方法的有效性和可行性,為城市群交通規(guī)劃提供了科學(xué)的參考。

關(guān)鍵詞:城市群;城際客運(yùn)交通;數(shù)據(jù)挖掘;機(jī)器學(xué)習(xí);預(yù)測方法。

Abstract

Withthecontinuousdevelopmentofurbanagglomerations,thedemandforinter-citypassengertransportationisalsoincreasing.Inviewoftheproblemofinter-citypassengertransportationdistributionpredictioninurbanagglomerations,thispaperproposesapredictionmethodbasedonmachinelearninganddataminingtechnology.Themethodmainlyincludesfoursteps:datacollectionandorganization,featureextraction,modeltraining,andmodelevaluation.Firstly,relevantdatawithintheurbanagglomerationisobtainedthroughsurveys,publicdata,andgeographicinformationsystems,andiscleanedandorganized.Secondly,importantfactorsaffectingthedistributionofinter-citypassengertransportation,suchaspopulationdensity,economicdevelopmentlevel,etc.,areexcavatedthroughfeatureextractiontechnology.Then,machinelearningalgorithmsareusedtoestablishapredictionmodelforinter-citypassengertransportationdistribution,andthemodelisevaluatedusingcross-validationtechnology.Finally,throughpracticalcases,theeffectivenessandfeasibilityofthemethodareverified,providingascientificreferenceforurbanagglomerationtransportationplanning.

Keywords:urbanagglomeration;inter-citypassengertransportation;datamining;machinelearning;predictionmethodTherapiddevelopmentofurbanizationhasledtotheformationofurbanagglomerations,whicharecharacterizedbycomplextransportationsystemsandthehighdemandforinter-citypassengertransportation.Therefore,itisessentialtoinvestigateandpredictthedistributionofinter-citypassengertransportationinurbanagglomerations,whichiscrucialforurbantransportationplanning.

Inthisstudy,dataminingandmachinelearningalgorithmsareutilizedtoestablishapredictionmodelforinter-citypassengertransportationdistributioninurbanagglomerations.Thefirststepistocollectandpreprocesstherelevantdata,includingthesocio-economicdata,transportationdata,andthedataoninter-citypassengertransportation.Then,variousdataminingtechniques,suchasclusteringanalysis,factoranalysis,andcorrelationanalysis,areemployedtoextracttheessentialfeaturesfromthedata.

Afterfeatureselection,machinelearningalgorithms,suchasdecisiontree,randomforest,andsupportvectormachine,areemployedtoestablishthepredictionmodelforinter-citypassengertransportationdistribution.Themodelisevaluatedusingcross-validationtechnologytoensurethereliabilityandaccuracyofthepredictionresults.

Finally,theproposedmethodisappliedtopracticalcasesofinter-citypassengertransportationinurbanagglomerations.Theresultsshowthatthemethodiseffectiveandfeasibleinpredictingthedistributionofinter-citypassengertransportationinurbanagglomerations.Therefore,themethodprovidesascientificreferenceforurbantransportationplanninginurbanagglomerations.

Inconclusion,thisstudyproposesadataminingandmachinelearning-basedpredictionmethodforinter-citypassengertransportationdistributioninurbanagglomerations.Themethodeffectivelyutilizesthevastamountsofdataavailablefortransportationplanningandprovidesaccurateandreliablepredictionresults.ThemethodisexpectedtocontributesignificantlytothetransportationplanningandmanagementofurbanagglomerationsinthefutureDespitethepotentialbenefitsoftheproposedmethod,therearestillsomelimitationsandchallengesthatneedtobeaddressed.First,theaccuracyandreliabilityofthepredictionresultsmaybeaffectedbythequality,completeness,andtimelinessofthetransportationdata.Therefore,effortsshouldbemadetoimprovethedatacollection,cleaning,andintegrationprocess.

Second,theproposedmethodmainlyfocusesoninter-citypassengertransportationdistribution,whileothertypesoftransportation,suchasintra-citytransportationandfreighttransportation,arenotincluded.Therefore,themethodshouldbeextendedtocoverallmodesoftransportationwithinurbanagglomerations.

Third,thepredictionmethodisbasedonhistoricaldata,whichmaynotalwaysreflectthecurrentandfuturetransportationdemandandsupply.Therefore,themethodshouldbecombinedwithreal-timedatatoimprovetheaccuracyofthepredictionresults.

Fourth,themethodmainlyconsidersthetransportationdemandandsupplyfactors,whileotherfactorssuchasenvironmental,social,andeconomicfactorsarenottakenintoaccount.Therefore,amorecomprehensiveandintegratedapproachshouldbedevelopedtoaddressthecomplexanddynamicnatureofurbantransportationplanningandmanagement.

Inaddition,theimplementationoftheproposedmethodmayrequiresignificantinvestmentindatainfrastructure,technology,andhumanresources,whichmayposechallengesforsomeurbanagglomerationswithlimitedresourcesandcapacity.Therefore,acost-benefitanalysisshouldbeconductedtoensurethefeasibilityandsustainabilityofthemethod.

Despitethesechallenges,theproposedmethodhassignificantpotentialtocontributetothetransportationplanningandmanagementofurbanagglomerations.Byprovidingaccurateandreliablepredictionsofinter-citypassengertransportationdistribution,themethodcaninformthedevelopmentofmoreeffectiveandefficienttransportationpoliciesandstrategies,improvetheutilizationoftransportationinfrastructureandresources,andenhancetheoverallmobilityandaccessibilityofurbanagglomerationsMoreover,thismethodcanalsobenefitthedecision-makingprocessesofvariousstakeholders,suchasgovernmentagencies,transportationcompanies,andurbanplanners.Byleveragingtheinsightsprovidedbythemethod,thesestakeholderscanbetterassessthedemandforinter-citytransportationandtailortheirpoliciesandservicesaccordingly.Forinstance,transportationcompaniescanoptimizetheirrouteplanningandpricingstrategies,whilegovernmentagenciescanallocateresourcesandinvestmentsmoreeffectivelytoimprovetransportationinfrastructureandconnectivity.

Inaddition,theproposedmethodcanalsocontributetothesustainabledevelopmentofurbanagglomerations.Byenablingmoreefficientutilizationoftransportationresourcesandreducingunnecessarytripsandcongestion,themethodcanhelpreducethecarbonfootprintassociatedwithinter-citytransportation.Additionally,byprovidingmoreaccurateandreliablepredictionsoftransportationdemand,themethodcaninformthedevelopmentofmoresustainabletransportationpoliciesandservices,suchasthepromotionofpublictransportationandthedevelopmentoflow-carbontransportationalternatives.

Itisworthnotingthattheproposedmethodalsohassomelimitationsandchallengesthatneedtobeaddressedinfutureresearch.Onemajorchallengeistheavailabilityandqualityofdata,especiallyindevelopingcountrieswheredatacollectionandmanagementmaybelessadvanced.Additionally,themethodmaynotbeapplicabletoalltypesofinter-citytransportation,suchasfreightorairtransportation,whichhavedifferentcharacteristicsanddemandpatterns.

Inconclusion,theproposedmethodhassignificantpotentialtoimprovethetransportationplanningandmanagementofurbanagglomerationsbyprovidingaccurateandreliablepredictionsofinter-citypassengertransportationdistribution.Byleveragingthismethod,vari

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論