版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
城市群城際客運(yùn)交通分布預(yù)測方法研究摘要
隨著城市群的不斷發(fā)展壯大,城際客運(yùn)交通的需求也在不斷增加。針對(duì)城市群內(nèi)城際客運(yùn)交通分布預(yù)測問題,本文提出了一種基于機(jī)器學(xué)習(xí)和數(shù)據(jù)挖掘技術(shù)的預(yù)測方法。該方法主要包括數(shù)據(jù)采集和整理、特征提取、模型訓(xùn)練和模型評(píng)估四個(gè)步驟。首先,利用調(diào)查問卷、公開數(shù)據(jù)以及地理信息系統(tǒng)等手段獲取城市群內(nèi)相關(guān)數(shù)據(jù),并進(jìn)行清理和整理。其次,通過特征提取技術(shù)挖掘出對(duì)城際客運(yùn)交通分布具有重要影響的因素,如人口密度、經(jīng)濟(jì)發(fā)展水平等。然后,利用機(jī)器學(xué)習(xí)算法建立城際客運(yùn)交通分布預(yù)測模型,并利用交叉驗(yàn)證等技術(shù)對(duì)模型進(jìn)行評(píng)估。最后,通過實(shí)際案例驗(yàn)證了該方法的有效性和可行性,為城市群交通規(guī)劃提供了科學(xué)的參考。
關(guān)鍵詞:城市群;城際客運(yùn)交通;數(shù)據(jù)挖掘;機(jī)器學(xué)習(xí);預(yù)測方法。
Abstract
Withthecontinuousdevelopmentofurbanagglomerations,thedemandforinter-citypassengertransportationisalsoincreasing.Inviewoftheproblemofinter-citypassengertransportationdistributionpredictioninurbanagglomerations,thispaperproposesapredictionmethodbasedonmachinelearninganddataminingtechnology.Themethodmainlyincludesfoursteps:datacollectionandorganization,featureextraction,modeltraining,andmodelevaluation.Firstly,relevantdatawithintheurbanagglomerationisobtainedthroughsurveys,publicdata,andgeographicinformationsystems,andiscleanedandorganized.Secondly,importantfactorsaffectingthedistributionofinter-citypassengertransportation,suchaspopulationdensity,economicdevelopmentlevel,etc.,areexcavatedthroughfeatureextractiontechnology.Then,machinelearningalgorithmsareusedtoestablishapredictionmodelforinter-citypassengertransportationdistribution,andthemodelisevaluatedusingcross-validationtechnology.Finally,throughpracticalcases,theeffectivenessandfeasibilityofthemethodareverified,providingascientificreferenceforurbanagglomerationtransportationplanning.
Keywords:urbanagglomeration;inter-citypassengertransportation;datamining;machinelearning;predictionmethodTherapiddevelopmentofurbanizationhasledtotheformationofurbanagglomerations,whicharecharacterizedbycomplextransportationsystemsandthehighdemandforinter-citypassengertransportation.Therefore,itisessentialtoinvestigateandpredictthedistributionofinter-citypassengertransportationinurbanagglomerations,whichiscrucialforurbantransportationplanning.
Inthisstudy,dataminingandmachinelearningalgorithmsareutilizedtoestablishapredictionmodelforinter-citypassengertransportationdistributioninurbanagglomerations.Thefirststepistocollectandpreprocesstherelevantdata,includingthesocio-economicdata,transportationdata,andthedataoninter-citypassengertransportation.Then,variousdataminingtechniques,suchasclusteringanalysis,factoranalysis,andcorrelationanalysis,areemployedtoextracttheessentialfeaturesfromthedata.
Afterfeatureselection,machinelearningalgorithms,suchasdecisiontree,randomforest,andsupportvectormachine,areemployedtoestablishthepredictionmodelforinter-citypassengertransportationdistribution.Themodelisevaluatedusingcross-validationtechnologytoensurethereliabilityandaccuracyofthepredictionresults.
Finally,theproposedmethodisappliedtopracticalcasesofinter-citypassengertransportationinurbanagglomerations.Theresultsshowthatthemethodiseffectiveandfeasibleinpredictingthedistributionofinter-citypassengertransportationinurbanagglomerations.Therefore,themethodprovidesascientificreferenceforurbantransportationplanninginurbanagglomerations.
Inconclusion,thisstudyproposesadataminingandmachinelearning-basedpredictionmethodforinter-citypassengertransportationdistributioninurbanagglomerations.Themethodeffectivelyutilizesthevastamountsofdataavailablefortransportationplanningandprovidesaccurateandreliablepredictionresults.ThemethodisexpectedtocontributesignificantlytothetransportationplanningandmanagementofurbanagglomerationsinthefutureDespitethepotentialbenefitsoftheproposedmethod,therearestillsomelimitationsandchallengesthatneedtobeaddressed.First,theaccuracyandreliabilityofthepredictionresultsmaybeaffectedbythequality,completeness,andtimelinessofthetransportationdata.Therefore,effortsshouldbemadetoimprovethedatacollection,cleaning,andintegrationprocess.
Second,theproposedmethodmainlyfocusesoninter-citypassengertransportationdistribution,whileothertypesoftransportation,suchasintra-citytransportationandfreighttransportation,arenotincluded.Therefore,themethodshouldbeextendedtocoverallmodesoftransportationwithinurbanagglomerations.
Third,thepredictionmethodisbasedonhistoricaldata,whichmaynotalwaysreflectthecurrentandfuturetransportationdemandandsupply.Therefore,themethodshouldbecombinedwithreal-timedatatoimprovetheaccuracyofthepredictionresults.
Fourth,themethodmainlyconsidersthetransportationdemandandsupplyfactors,whileotherfactorssuchasenvironmental,social,andeconomicfactorsarenottakenintoaccount.Therefore,amorecomprehensiveandintegratedapproachshouldbedevelopedtoaddressthecomplexanddynamicnatureofurbantransportationplanningandmanagement.
Inaddition,theimplementationoftheproposedmethodmayrequiresignificantinvestmentindatainfrastructure,technology,andhumanresources,whichmayposechallengesforsomeurbanagglomerationswithlimitedresourcesandcapacity.Therefore,acost-benefitanalysisshouldbeconductedtoensurethefeasibilityandsustainabilityofthemethod.
Despitethesechallenges,theproposedmethodhassignificantpotentialtocontributetothetransportationplanningandmanagementofurbanagglomerations.Byprovidingaccurateandreliablepredictionsofinter-citypassengertransportationdistribution,themethodcaninformthedevelopmentofmoreeffectiveandefficienttransportationpoliciesandstrategies,improvetheutilizationoftransportationinfrastructureandresources,andenhancetheoverallmobilityandaccessibilityofurbanagglomerationsMoreover,thismethodcanalsobenefitthedecision-makingprocessesofvariousstakeholders,suchasgovernmentagencies,transportationcompanies,andurbanplanners.Byleveragingtheinsightsprovidedbythemethod,thesestakeholderscanbetterassessthedemandforinter-citytransportationandtailortheirpoliciesandservicesaccordingly.Forinstance,transportationcompaniescanoptimizetheirrouteplanningandpricingstrategies,whilegovernmentagenciescanallocateresourcesandinvestmentsmoreeffectivelytoimprovetransportationinfrastructureandconnectivity.
Inaddition,theproposedmethodcanalsocontributetothesustainabledevelopmentofurbanagglomerations.Byenablingmoreefficientutilizationoftransportationresourcesandreducingunnecessarytripsandcongestion,themethodcanhelpreducethecarbonfootprintassociatedwithinter-citytransportation.Additionally,byprovidingmoreaccurateandreliablepredictionsoftransportationdemand,themethodcaninformthedevelopmentofmoresustainabletransportationpoliciesandservices,suchasthepromotionofpublictransportationandthedevelopmentoflow-carbontransportationalternatives.
Itisworthnotingthattheproposedmethodalsohassomelimitationsandchallengesthatneedtobeaddressedinfutureresearch.Onemajorchallengeistheavailabilityandqualityofdata,especiallyindevelopingcountrieswheredatacollectionandmanagementmaybelessadvanced.Additionally,themethodmaynotbeapplicabletoalltypesofinter-citytransportation,suchasfreightorairtransportation,whichhavedifferentcharacteristicsanddemandpatterns.
Inconclusion,theproposedmethodhassignificantpotentialtoimprovethetransportationplanningandmanagementofurbanagglomerationsbyprovidingaccurateandreliablepredictionsofinter-citypassengertransportationdistribution.Byleveragingthismethod,vari
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年私有云服務(wù)器租借合同
- 2024年貨物買賣合同(歐姆龍)
- 二零二五年度科技創(chuàng)新創(chuàng)業(yè)財(cái)政借款合同模板2篇
- 二零二五年度煤炭產(chǎn)品進(jìn)出口代理合同3篇
- 2024版全新簽定合同授權(quán)委托書下載
- 2024年餐飲加盟經(jīng)營協(xié)議規(guī)范文本版B版
- 2024標(biāo)準(zhǔn)委托事務(wù)協(xié)議范例版B版
- 2024版外貿(mào)銷售協(xié)議標(biāo)準(zhǔn)格式版B版
- 觀察含羞草日記6篇
- 那一刻我長大了作文9篇
- 駕校教練安全培訓(xùn)課件
- 中央2024年住房和城鄉(xiāng)建設(shè)部信息中心招聘3人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- ICH《M10:生物分析方法驗(yàn)證及樣品分析》
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之19:“7支持-7.2能力”(雷澤佳編制-2025B0)
- 2024秋新商務(wù)星球版地理7年級(jí)上冊(cè)教學(xué)課件 第5章 地球表層的人文環(huán)境要素 第4節(jié) 發(fā)展差異與區(qū)際聯(lián)系
- 2025學(xué)年人教新版英語七下Unit1隨堂小測
- 口腔診療的一般護(hù)理
- 建筑廢棄混凝土處置和再生建材利用措施計(jì)劃
- 七年級(jí)上冊(cè)英語期末??甲魑姆段?0篇(含譯文)
- 福建省能化集團(tuán)招聘筆試題庫
- 2024-2025學(xué)年二年級(jí)數(shù)學(xué)上冊(cè)期末樂考非紙筆測試題(二 )(蘇教版)
評(píng)論
0/150
提交評(píng)論