




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制研究基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制研究
摘要:本文提出了一種基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制方法,旨在減小機械臂運動過程中的振動幅度,提高控制精度和穩(wěn)定性,為工業(yè)機器人的應(yīng)用提供技術(shù)支持。首先,基于線結(jié)構(gòu)光技術(shù)實現(xiàn)機械臂姿態(tài)測量,提取關(guān)鍵點位移信息,并建立起機械臂運動模型。然后,針對機械臂在運動過程中的振動問題,設(shè)計了基于優(yōu)化PID控制器的控制方法。在控制器參數(shù)優(yōu)化方面,采用了遺傳算法和粒子群優(yōu)化方法,提高了控制器的響應(yīng)速度和抗干擾能力。最后,通過實驗驗證,證明了該控制方法的有效性和實用性,實驗結(jié)果表明,相比傳統(tǒng)PID控制,該控制方法成功降低了機械臂的振動幅度,提高了機械臂的穩(wěn)定性和精度。
關(guān)鍵詞:線結(jié)構(gòu)光、剛?cè)狁詈蠙C械臂、振動控制、PID控制、優(yōu)化算法。
Abstract:Thispaperproposesavibrationcontrolmethodforrigid-flexiblecoupledmechanicalarmbasedonlinestructurelightandoptimizedPIDcontrol.Theaimistoreducethevibrationamplitudeduringthemovementofthemechanicalarm,improvethecontrolprecisionandstability,andprovidetechnicalsupportforindustrialrobotapplication.Firstly,themechanicalarmattitudeismeasuredbasedonthelinestructurelighttechnology,thekeypointdisplacementinformationisextracted,andthemechanicalarmmotionmodelisestablished.Then,aimingatthevibrationproblemofthemechanicalarmduringthemovement,acontrolmethodbasedonoptimizedPIDcontrollerisdesigned.Intermsofcontrollerparameteroptimization,geneticalgorithmandparticleswarmoptimizationmethodareadoptedtoimprovetheresponsespeedandanti-interferenceabilityofthecontroller.Finally,throughexperimentalverification,theeffectivenessandpracticalityofthecontrolmethodareproved.TheexperimentalresultsshowthatcomparedwithtraditionalPIDcontrol,thecontrolmethodsuccessfullyreducesthevibrationamplitudeofthemechanicalarmandimprovesthestabilityandaccuracyofthemechanicalarm.
keywords:linestructurelight,rigid-flexiblecoupledmechanicalarm,vibrationcontrol,PIDcontrol,optimizationalgorithmInrecentyears,therehasbeenagrowingdemandforhigh-precisionandflexiblemechanicalarmsinvariousindustries.However,thevibrationofthemechanicalarmduringoperationcansignificantlyaffectitsstability,accuracyandspeed,leadingtopoorperformanceandpotentialsafetyhazards.Therefore,itisessentialtodevelopeffectivevibrationcontrolstrategiesformechanicalarms.
Amongvariousvibrationcontrolmethods,thePIDcontrolhasbeenwidelyusedduetoitssimplicity,effectivenessandlowcost.However,traditionalPIDcontrolcannoteffectivelysuppressthevibrationoftherigid-flexiblecouplingmechanicalarm,whichisacommontypeofmechanicalarm.Therefore,anoptimization-basedPIDcontrolmethodisproposedinthispapertoimprovethevibrationsuppressionperformanceofthemechanicalarm.
Theproposedcontrolmethodcombineslinestructurelighttechnologyandoptimizationalgorithmtoachieveaccuratetrackingofthemechanicalarmtiptrajectoryandrobustvibrationsuppression.Thelinestructurelighttechnologyisusedtoobtainthepositionandorientationinformationofthemechanicalarmtipinreal-time,whichisfedbacktothecontroller.TheoptimizationalgorithmisemployedtosearchfortheoptimalPIDcontrolparametersthatmaximizethecontrolperformanceandminimizethevibrationamplitudeofthemechanicalarm.
Toevaluatetheeffectivenessandpracticalityofthecontrolmethod,experimentswereconductedonaflexiblemechanicalarm.Theexperimentalresultsshowthattheproposedcontrolmethodsuccessfullyreducesthevibrationamplitudeofthemechanicalarmandimprovesitsstabilityandaccuracy.ComparedwithtraditionalPIDcontrol,theproposedmethodachievesbettervibrationsuppressionperformanceandcaneffectivelyadapttodifferentoperatingconditions.
Inconclusion,theoptimization-basedPIDcontrolmethodproposedinthispaperprovidesapracticalsolutionforvibrationcontrolofrigid-flexiblecoupledmechanicalarms.Itcansignificantlyimprovetheperformanceandsafetyofmechanicalarmsinvariousapplications.FutureresearchcanfurtherrefineandoptimizethecontrolmethodandextendittomorecomplexmechanicalsystemsMoreover,besidestheoptimization-basedPIDcontrolmethod,therearealsoothercontrolstrategiesthatcanbeappliedinthevibrationcontrolofmechanicalsystems,suchasfuzzycontrol,neuralnetworkcontrol,andadaptivecontrol.Fuzzycontrolisamethodthatutilizesfuzzylogictodealwithcomplexanduncertainsystems.Itcaneffectivelyhandlenonlinearsystemswithimpreciseandincompleteinformation.Neuralnetworkcontrolisamethodthatusesartificialneuralnetworkstoapproximatethesystemdynamicsandobtainacontroloutput.Itcanachievehighprecisioncontrolandadaptabilitytovaryingconditions.Adaptivecontrolisamethodthatadjuststhecontrolparametersbasedonthesystem'sbehaviorandresponse.Itcanimprovethecontrolperformanceandstabilityofthesystem.
Furthermore,withthedevelopmentofadvancedsensingandactuationtechnologies,therearemoreopportunitiestoadvancethevibrationcontrolofmechanicalsystems.Forinstance,byutilizingsensorssuchasaccelerometers,straingauges,anddisplacementsensors,thevibrationbehaviorofmechanicalsystemscanbemonitoredinreal-time,leadingtomoreaccurateandefficientcontrol.Besides,byimplementingactuationtechnologiessuchaspiezoelectricactuators,magnetostrictiveactuators,andshapememoryalloys,thecontrolinputscanbemorepreciseandresponsive,leadingtobettervibrationsuppressionperformance.
Insummary,whiletheoptimization-basedPIDcontrolmethodproposedinthispaperiseffectiveinvibrationcontrolofmechanicalarms,therearealsoothercontrolstrategiesandadvancementsinsensingandactuationtechnologiesthatcanbeexploredandapplied.Continuousresearchanddevelopmentinthisfieldcancontributetotheimprovementofthesafety,efficiency,andreliabilityofvariousmechanicalsystemsFurthermore,itisimportanttoconsidertheapplication-specificrequirementsandconstraintsinimplementingvibrationcontrolstrategies.Mechanicalsystemsindifferentindustriesandenvironmentsmayhaveuniquefactorssuchassize,weight,speed,andprecisionthataffecttheirvibrationalbehaviorandaffecttheselectionandtuningofcontrolparameters.Forexample,intheaerospaceindustry,vibrationcontroliscrucialforensuringthestructuralintegrityandperformanceofaircraft,satellites,andlaunchvehicles.Theharshanddynamicconditionsinspaceandduringlaunchposesignificantchallengesfordesigningandintegratingvibrationcontrolsystems.Similarly,inthemanufacturingindustry,vibrationcontrolisessentialforreducingnoise,improvingproductquality,andprolongingequipmentlifespan.Thetrade-offsbetweencontrolperformance,cost,andenergyconsumptionneedtobecarefullyassessedandoptimizedinordertoachievethedesiredoutcomes.
Anotherareaofresearchthatcanenhancevibrationcontrolistheintegrationofartificialintelligence()techniques.Machinelearningalgorithmscanenableadaptiveandrobustcontrolapproachesthatcanautomaticallyadjustthecontrolparametersbasedonchangingenvironmentalconditionsandoperatingstates.Forexample,reinforcementlearningalgorithmscanlearnoptimalcontrolpoliciesbytrialanderrorinteractionswiththesystem,whileneuralnetworkscanprovidenon-linearmappingbetweeninputandoutputsignals.Theuseofinvibrationcontrolcanalsoenablepredictivemaintenancecapabilitiesbyanalyzingvibrationdataanddetectinganomaliesandfaultsinreal-time.
Overall,vibrationcontrolisacriticalaspectofmechanicalsystemdesignandoperation,andtherearediverseresearchopportunitiesforadvancingthefield.Theoptimization-basedPIDcontrolmethodpresentedinthispaperisavaluablecontributiontotheexistingbodyofknowledgeandcanserveasafoundationforfurtherinvestigationandcomparisonwithotherapproaches.Byleveragingthecomplementarystrengthsofmultiplecontrolmethodsandtechno
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2035年全球及中國訂制家具和家俱行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景研究報告
- 工業(yè)機械的戰(zhàn)略展望
- 鐵路三項合格證故障培訓(xùn)
- 艾滋病病人管理制度
- 濃硝酸安全培訓(xùn)
- 幼兒園獲獎公開課:大班語言《桃樹下的小白兔》課件
- 2025年復(fù)烤煙葉項目發(fā)展計劃
- 2025年主令電器防雷避雷產(chǎn)品項目建議書
- 2024年中國醫(yī)療機器人行業(yè)發(fā)展現(xiàn)狀、進出口貿(mào)易及市場規(guī)模預(yù)測報告
- 中職高考數(shù)學(xué)二輪復(fù)習(xí)專項突破練習(xí)專題18 等差數(shù)列(含答案)
- 核心素養(yǎng)視域下的小學(xué)英語“教學(xué)評一體化”實踐研究
- 2025年南昌理工學(xué)院單招職業(yè)技能測試題庫審定版
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫帶答案
- 2025年黃山職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫及參考答案
- 學(xué)校食堂食材采購合同范本
- 冷庫安全培訓(xùn)
- 2025年內(nèi)蒙古法院系統(tǒng)招聘用制書記員2988人過渡高頻重點模擬試卷提升(共500題附帶答案詳解)
- 自媒體運營實戰(zhàn)教程(抖音版) 課件 第7、8章 短視頻運營;直播運營
- 音頻內(nèi)容創(chuàng)新策略-洞察分析
- 2024年陜西財經(jīng)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 1.北京的春節(jié) 練習(xí)題(含答案)
評論
0/150
提交評論