版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°2.一次函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.4.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2(k1≠0)與x軸交于點A,與y軸交于點B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣65.關(guān)于x的正比例函數(shù),y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-6.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(
)A.30°B.45°C.50°D.60°7.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm8.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)10.如圖,△ABC中,AB=AC,BC=12cm,點D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點E、F分別落在邊AB、BC上,則△EBF的周長是()cm.A.7 B.11 C.13 D.1611.在學(xué)校演講比賽中,10名選手的成績折線統(tǒng)計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數(shù)是5 C.中位數(shù)是90 D.平均分為87.512.設(shè)x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將三角形AOC繞點O順時針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)14.?dāng)?shù)學(xué)綜合實踐課,老師要求同學(xué)們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.15.拋物線的頂點坐標(biāo)是________.16.如圖,AB為⊙O的直徑,BC為⊙O的弦,點D是劣弧AC上一點,若點E在直徑AB另一側(cè)的半圓上,且∠AED=27°,則∠BCD的度數(shù)為_______.17.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.18.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.20.(6分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.21.(6分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設(shè)BD為xcm,CE為ycm.小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小聰?shù)奶骄窟^程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關(guān)數(shù)值保留一位小數(shù)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)線段BD是線段CE長的2倍時,BD的長度約為_____cm.22.(8分)實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點O.以O(shè)為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,AB與⊙O的位置關(guān)系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.23.(8分)在平面直角坐標(biāo)系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當(dāng)﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.24.(10分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.25.(10分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=1.求拋物線的函數(shù)表達式.當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.26.(12分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點、的坐標(biāo)分別為,.請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;請作出關(guān)于軸對稱的;點的坐標(biāo)為.的面積為.27.(12分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)之間的函數(shù)圖象如下圖所示.(1)求甲組加工零件的數(shù)量y與時間x之間的函數(shù)關(guān)系式.(2)求乙組加工零件總量a的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點睛】本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關(guān)鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補的角.2、B【解析】
由二次函數(shù),可得函數(shù)圖像經(jīng)過一、三、四象限,所以不經(jīng)過第二象限【詳解】解:∵,∴函數(shù)圖象一定經(jīng)過一、三象限;又∵,函數(shù)與y軸交于y軸負(fù)半軸,
∴函數(shù)經(jīng)過一、三、四象限,不經(jīng)過第二象限故選B【點睛】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響3、B【解析】
由平行四邊形性質(zhì)得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質(zhì)和判定、平行線的性質(zhì),三角函數(shù)的運用;熟練掌握平行四邊形的性質(zhì),勾股定理,判斷出AB=CE是解決問題的關(guān)鍵.4、C【解析】
如圖,作CH⊥y軸于H.通過解直角三角形求出點C坐標(biāo)即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點C(﹣1,3)代入,得到k2=﹣3,故選C.【點睛】本題考查反比例函數(shù)于一次函數(shù)的交點問題,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.5、B【解析】
根據(jù)正比例函數(shù)定義可得m2-3=1,再根據(jù)正比例函數(shù)的性質(zhì)可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數(shù)的性質(zhì)和定義,關(guān)鍵是掌握正比例函數(shù)y=kx(k≠0)的自變量指數(shù)為1,當(dāng)k<0時,y隨x的增大而減小.6、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.7、B【解析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【點睛】本題考查切線的性質(zhì),弧長公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.8、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認(rèn)識.9、A【解析】
關(guān)于y軸對稱的點的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為(-1,2)【點睛】本題考查關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)特征,牢記關(guān)于坐標(biāo)軸對稱的點的性質(zhì)是解題的關(guān)鍵.10、C【解析】
直接利用平移的性質(zhì)得出EF=DC=4cm,進而得出BE=EF=4cm,進而求出答案.【詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長為:4+4+5=13(cm).故選C.【點睛】此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長是解題關(guān)鍵.11、C【解析】試題分析:根據(jù)折線統(tǒng)計圖可得:最高分為95,眾數(shù)為90;中位數(shù)90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.12、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5π【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.14、【解析】
根據(jù)題意作圖,可得AB=6cm,設(shè)正方體的棱長為xcm,則AC=x,BC=3x,根據(jù)勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據(jù)題意可得AB=6cm,
設(shè)正方體的棱長為xcm,則AC=x,BC=3x,
根據(jù)勾股定理,AB2=AC2+BC2,即,
解得故答案為:.【點睛】本題考查了勾股定理的應(yīng)用,正確理解題意是解題的關(guān)鍵.15、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標(biāo)是(0,-1),故答案為(0,-1).16、117°【解析】
連接AD,BD,利用圓周角定理解答即可.【詳解】連接AD,BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案為117°【點睛】此題考查圓周角定理,關(guān)鍵是根據(jù)圓周角定理解答.17、120°【解析】
設(shè)扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設(shè)扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關(guān)鍵是掌握基本知識.18、(Ⅰ)(Ⅱ)如圖,取格點、,連接與交于點,連接與交于點.【解析】
(Ⅰ)根據(jù)勾股定理進行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點C與F關(guān)于AM對稱,連接DF交AM于點P,此時的值最小.【詳解】(Ⅰ)根據(jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點、,連接與交于點,連接與交于點,則點P即為所求.說明:構(gòu)造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點F,使AF=AC=1,則AM垂直平分CF,點C與F關(guān)于AM對稱,連接DF交AM于點P,則點P即為所求.【點睛】本題考查作圖-應(yīng)用與設(shè)計,涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對稱—最短距離等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用數(shù)形結(jié)合的思想解決問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解析】
(1)根據(jù)尺規(guī)作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設(shè)半徑為,得出、的長,在中,根據(jù)勾股定理求出這個圓形截面的半徑.【詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設(shè)半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.【點睛】此題考查了垂徑定理和勾股定理,關(guān)鍵是根據(jù)題意畫出圖形,再根據(jù)勾股定理進行求解.20、(1)y=x2+x;(2)t=-4,r=-1.【解析】
(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結(jié)論;(2)進行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當(dāng)-2<r<1,且r≠0時,當(dāng)x=r時,y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時,y最小=-4,所以,這時t=-4,r=-1.當(dāng)r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.21、(1)1.1;(2)見解析;(3).【解析】
(1)(2)需要認(rèn)真按題目要求測量,描點作圖;(3)線段BD是線段CE長的2倍的條件可以轉(zhuǎn)化為一次函數(shù)圖象,通過數(shù)形結(jié)合解決問題.【詳解】根據(jù)題意測量約故應(yīng)填:根據(jù)題意畫圖:當(dāng)線段BD是線段CE長的2倍時,得到圖象,該圖象與中圖象的交點即為所求情況,測量得BD長約.故答案為(1)1.1;(2)見解析;(3)1.7.【點睛】本題考查函數(shù)作圖和函數(shù)圖象實際意義的理解,在中,考查學(xué)生由數(shù)量關(guān)系得到函數(shù)關(guān)系的轉(zhuǎn)化思想.22、(1)作圖見解析;(2)作圖見解析;綜合運用:(1)相切;(2)⊙O的半徑為.【解析】
綜合運用:(1)根據(jù)角平分線上的點到角兩邊的距離相等可得AB與⊙O的位置關(guān)系是相切;(2)首先根據(jù)勾股定理計算出AB的長,再設(shè)半徑為x,則OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【詳解】(1)①作∠BAC的平分線,交BC于點O;②以O(shè)為圓心,OC為半徑作圓.AB與⊙O的位置關(guān)系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,設(shè)半徑為x,則OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半徑為.【點睛】本題考查了1.作圖—復(fù)雜作圖;2.角平分線的性質(zhì);3.勾股定理;4.切線的判定.23、(1)k=﹣1;(2)當(dāng)﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【解析】
(1)由拋物線的對稱軸直線可得h,然后再由拋物線交于原點代入求出k即可;(2)先根據(jù)拋物線與x軸有公共點求出k的取值范圍,然后再根據(jù)拋物線的對稱軸及當(dāng)﹣1<x<2時,拋物線與x軸有且只有一個公共點,進一步求出k的取值范圍即可.【詳解】解:(1)∵拋物線y=(x﹣h)2+k的對稱軸是直線x=1,∴h=1,把原點坐標(biāo)代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點,∴對于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當(dāng)x=﹣1時,y=4+k;當(dāng)x=2時,y=1+k,∵拋物線的對稱軸為x=1,且當(dāng)﹣1<x<2時,拋物線與x軸有且只有一個公共點,∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當(dāng)﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【點睛】拋物線與一元二次方程的綜合是本題的考點,熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.24、(1)詳見解析;(2);(3)【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;
(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時,得到d+f=12,當(dāng)M與B重合時,得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切線,AB是⊙O的直徑,
∴∠OBP=90°,
在△POC與△POB中,,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切線;
(2)過O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD?OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP?OP=OC2
∴,
∴sin∠CPO=;
(3)連接BC,
∵AB是⊙O的直徑,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
當(dāng)CM⊥AB時,
d=AM,f=BM,
∴d+f=AM+BM=1,
當(dāng)M與B重合時,
d=9,f=0,
∴d+f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024油罐清洗合同
- 企業(yè)網(wǎng)絡(luò)優(yōu)化咨詢協(xié)議
- 2024版建筑工程招標(biāo)競購合同指南
- 互聯(lián)網(wǎng)營銷分析及策略優(yōu)化合同
- 農(nóng)村宅基地流轉(zhuǎn)流轉(zhuǎn)租賃協(xié)議(2024年版)
- 購物綜合體開發(fā)項目的可行性研究報告
- 2023年信陽息縣中醫(yī)院招聘衛(wèi)生專業(yè)技術(shù)人員筆試真題
- 護士大學(xué)生職業(yè)生涯規(guī)劃書
- 足球特色校園建設(shè)方案(3篇)
- 新高考語文一輪復(fù)習(xí)古詩文默寫+閱讀闖關(guān)練習(xí)第9篇《赤壁賦》(解析版)
- 檔案工作管理情況自查表
- 豎向設(shè)計圖課件
- WinCCflexible的傳送操作HMI設(shè)備設(shè)置入門
- 三寶屯污水處理廠三期改擴建工程項目環(huán)境影響報告
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)教育智慧樹知到答案章節(jié)測試2023年湖南鐵路科技職業(yè)技術(shù)學(xué)院
- 機電一體化說專業(yè)比賽
- (國開電大)??啤妒袌鰻I銷學(xué)》網(wǎng)上形考任務(wù)4試題及答案
- 2023年??谑惺聵I(yè)單位招聘考試《公共基礎(chǔ)知識》題庫及答案解析
- 《航空運輸?shù)乩怼氛n程標(biāo)準(zhǔn)
- pcs-9611d-x說明書國內(nèi)中文標(biāo)準(zhǔn)版
- 皇城相府(精美PPT)
評論
0/150
提交評論