四川中考綜合模擬考試《數(shù)學(xué)試題》含答案解析_第1頁
四川中考綜合模擬考試《數(shù)學(xué)試題》含答案解析_第2頁
四川中考綜合模擬考試《數(shù)學(xué)試題》含答案解析_第3頁
四川中考綜合模擬考試《數(shù)學(xué)試題》含答案解析_第4頁
四川中考綜合模擬考試《數(shù)學(xué)試題》含答案解析_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

四川數(shù)學(xué)中考綜合模擬檢測試題

學(xué)校班級姓名成績

一、選擇題(本大題共10個小題,每小題3分,共30分,每小題均有四個選項,其中只有一

項符合題目要求,答案涂在答題卡上)

L-2的倒數(shù)是()

1

A.-2B.----D.2

2

2.下列所給圖案中,既是軸對稱圖形,又是中心對稱圖形的是()

/T\

A.

3.如圖,夜晚路燈下有一排同樣高的旗桿,離路燈越近,旗桿的影子(

A.越長B.越短C.一樣長D.隨時間變化而變化

4.如今青白江投資環(huán)境,得到越來越多的境內(nèi)外優(yōu)質(zhì)企業(yè)的青睞,外資和注冊資本5000萬以上的企業(yè)相

比去年同期翻了一番,將5000萬這個數(shù)用科學(xué)記數(shù)法表示為()

A.50xl06B.5xl07C.5xl08D.5xl09

5.已知sina=*l,且a是銳角,則a等于()

2

A.75°B.60°C.45°D.30°

6.下列運算正確的是()

A.2x2*3x2=6x2B.x3+x5=x8

C.X44-X=X3D.(x5)2=x7

7.二次函數(shù)尤+c的圖象如圖所示,下列結(jié)論《首送的是()

A.a<0B.b<0C.c>0D.b1-4ac>0

8.樣本數(shù)據(jù)4,m,5,n,9的平均數(shù)是6,眾數(shù)是9,則這組數(shù)據(jù)的中位數(shù)是()

A.3B.4C.5D.9

9.如圖,[ABC中,DE//BC,若4):。8=1:2,口ADE的周長是6,則口48c的周長是()

BC

A.6B.12C.18D.24

10.當(dāng)OVxVl時,x2、x、上的大小順序是()

X

711T1721

A.x<x<—B.—<x<xC.—<x<:xD.x<x<—

XXXX

二、填空題(本大題共4個小題,每小題4分,共16分,答案寫在答題卡上)

11計.算(、6+1)(6-1)的結(jié)果等于_____________.

12如.圖,等邊口。鉆的邊長為2,則點B的坐標(biāo)為____.

A八YB

13若.X=則0的值等于_____.

a3b

14.如圖,是。0的弦,半徑OCJ_AB于點D,若。。的半徑為10,AB=16,則CQ的長是

三、解答題(本大題共6個小題,共54分,解答過程寫在答題卡上)

15.(1)計算(―2)3—后+|l-6sin60]+(2019—〃)°.

(2)先化簡,再求值:2——---->1-5-----r——---->其中X=-1.

IX+\)X2-1

16.已知2+6是方程x2—4x+c=0的一個根,求方程的另一個根及C的值.

17.小明調(diào)查了本校九年級300名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計圖的一部分如圖:

(1)補全條形統(tǒng)計圖;

(2)求扇形統(tǒng)計圖中表示“步行”的扇形圓心角的度數(shù);

(3)請估計在全校1200名學(xué)生中乘公交的學(xué)生人數(shù).

18.如圖,有一個三角形的鋼架4BC,NA=30°,NC=45°,AC=2(6+l)m.請計算說明,工人師傅

搬運此鋼架能否通過一個直徑為2.4m的圓形門?

B

19.如圖,已知三角形OAB的頂點B在x軸的負(fù)半軸上,四,08,點人的坐標(biāo)為(-4,2)),雙曲線

k

y=—(k<0)的一支經(jīng)過04邊的中點C,且與相交于點D.

x

(1)求此雙曲線的函數(shù)表達式;

(2)連結(jié)OD,求口AOD的面積.

20.將一副三角板RtZMBO與R34CB(其中N4BO=N4CB=90°,ZD=60°,ZABC=45°)如圖擺

放,Rt^ABD中N。所對的直角邊與Rtz^ACB的斜邊恰好重合.以48為直徑的圓經(jīng)過點C,且與AD相交

于點£連接EB,連接CE并延長交8。于F.

(1)求證:EF平分NBED:

(2)求aBE尸與△〃£尸的面積的比值.

四、填空題(本大題共5個小題,每小題4分,共20分,答案寫在答題卡上)B卷(共50分)

21.已知a為實數(shù),那么厚■等于.

22.在試制某種洗發(fā)液新品種時,需要選用兩種不同添加劑.現(xiàn)有芳香度分別為0,1,2,3,4,5的六種

添加劑可供選用.根據(jù)試驗設(shè)計原理,通常要先從芳香度為0,1,2的三種添加劑中隨機選取一種,再從芳

香度為3,4,5的三種添加劑中隨機選取一種,進行搭配試驗,則芳香度之和等于5的概率為—.

1k

23.如圖,在平面直角坐標(biāo)系中,直線4:y=--X與反比例函數(shù)y=—的圖象交于A,B兩點(點A在點B

2x

1k

左側(cè)),已知A點的縱坐標(biāo)是1:將直線4:y=--x沿y向上平移后的直線/,與反比例函數(shù)y=-在第二

2x

象限內(nèi)交于點C,如果HABC的面積為3,則平移后的直線4的函數(shù)表達式為.

24.如圖,等邊三角形ABC中,AB=3,點D是CB延長線上一點,且BD=1,點E在亨繾4c上,當(dāng)

ZBAD=ZCDE時,AE長為.

25.如圖,線段AC=”+1(其中〃為正整數(shù)),點B在線段AC上,在線段4c同側(cè)作菱形與菱形BCEF,

點尸在邊上,AB=n,ZABM=60°,連接AM、ME、EA得到當(dāng)AB=1時,△AME的面積記

為S;當(dāng)AB=2時,△AME的面積記為S2;當(dāng)AB=3時,ZvlME的面積記為S3;…;當(dāng)AB=〃時,XAME

的面積記為S”當(dāng)時,S?-S?.i=_.

五、解答題(本小題共三個小題,共30分,答案寫在答題卡上)

26.某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元.根據(jù)市場調(diào)查,以單價13元批發(fā)給經(jīng)銷,商銷商愿意經(jīng)

銷5000件,并且表示每降價0.1元,愿意多經(jīng)銷500件.服裝廠決定批發(fā)價在不低于11.4元的前提下,將批

發(fā)價下降0.1x元.

(1)求銷售量y與x的關(guān)系,并求出x的取值范圍;

(2)不考慮其他因素,請問廠家批發(fā)單價是多少時所獲利潤W可以最大?最大利潤為多少?

27.已知:IJABC和UADE均為等腰直角三角形,ABAC=ZDAE=90°-AB=AC,AD=AE,連接

BD,CD,CE.

(1)如圖1所示,線段3。與CE的數(shù)量關(guān)系是,位置關(guān)系是;

(2)在圖1中,若點M、P、N分別為。石、DC、的中點,連接BW,PN,MN,請判斷口PMN的

形狀,并說明理由;

(3)如圖2所示,若M、N、P分別為。E、BC、0c上的點,且滿足吧=科=變=1,BD=6,

DEBCDC3

連接PM,PN,MN,則線段MN長度是多少?

28.如圖,拋物線y=ax?+bx+c與x軸相交于A(3,0)、B兩點,與y軸交于點C(0,3),點B在x軸

的負(fù)半軸上,且OA=3OB.

(1)求拋物線的函數(shù)關(guān)系式;

(2)若P是拋物線上且位于直線AC上方的一動點,求口ACP的面積的最大值及此時點P的坐標(biāo);

(3)在線段OC上是否存在一點M,使BM+注CM值最???若存在,請求出這個最小值及對應(yīng)的M

2

點的坐標(biāo);若不存在,請說明理由.

答案與解析

一、選擇題(本大題共10個小題,每小題3分,共30分,每小題均有四個選項,其中只有一

項符合題目要求,答案涂在答題卡上)

L-2的倒數(shù)是()

A.-2B.C.-D.2

22

【答案】B

【解析】

【分析】

根據(jù)倒數(shù)的定義求解.

【詳解】-2的倒數(shù)是

2

故選B

【點睛】本題難度較低,主要考查學(xué)生對倒數(shù)相反數(shù)等知識點的掌握

2.下列所給的圖案中,既是軸對稱圖形,又是中心對稱圖形的是()

【答案】D

【解析】

【分析】

根據(jù)中心對稱圖形與軸對稱圖形的概念對各選項進行逐一分析即可.

【詳解】A.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;

B.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;

C.是軸對稱圖形,但不是中心對稱圖形,故本選項錯誤;

D.既是軸對稱圖形,又是中心對稱圖形,故本選項正確;

故選:D.

【點睛】本題考查的是中心對稱圖形,軸對稱圖形.熟知中心對稱圖形與軸對稱圖形的概念是解答此題的關(guān)

鍵.

3.如圖,夜晚路燈下有一排同樣高的旗桿,離路燈越近,旗桿的影子()

A.越長B.越短C.一樣長D.隨時間變化而變化

【答案】B

【解析】

由圖易得ABVCD,那么離路燈越近,它的影子越短,

故選B.

【點睛】本題考查了中心投影,用到的知識點為:影長是點光源與物高的連線形成的在地面的陰影部分的

長度.

4.如今的青白江投資環(huán)境,得到越來越多的境內(nèi)外優(yōu)質(zhì)企業(yè)的青睞,外資和注冊資本5000萬以上的企業(yè)相

比去年同期翻了一番,將5000萬這個數(shù)用科學(xué)記數(shù)法表示為()

A.50xl06B.5xl07C.5xl08D.5xl09

【答案】B

【解析】

【分析】

科學(xué)記數(shù)法的表示形式為axlO"的形式,其中l(wèi)W|a|V10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,

小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕

對值<1時,n是負(fù)數(shù).

【詳解】解:500075=50000000=5xlO7.

故選:B.

【點睛】本題考查用科學(xué)記數(shù)法表示一個數(shù).科學(xué)記數(shù)法的表示形式為axion的形式,其中l(wèi)<|a|<10,n為

整數(shù),能正確確定a和n是關(guān)鍵.

5.已知sina=Xm,且a是銳角,則a等于()

2

A.75°B.60°C,45°D.30°

【答案】B

【解析】

試題分析:本題只需要根據(jù)特殊角的三角函數(shù)值即可得出答案.sin60。=則8=60°.

2

6.下列運算正確的是()

A.2x2,3x2=6x2B.x3+x5=x8

C.x,+x=x3D.(x5)2=x7

【答案】C

【解析】

【分析】

根據(jù)同底數(shù)累的乘除法運算法則與合并同類項法則及積的乘方運算法則逐一計算,然后再加以判斷即可.

【詳解】A:2X2-3X2=6X4-故A錯誤;

B:與不是同類項,無法合并,故B錯誤;

C:X44-%==%3,故C正確;

D:(無5)2="°,故D錯誤;

故選:C.

【點睛】本題主要考查了同底數(shù)罌的乘除法運算與合并同類項及積的乘方運算,熟練掌握相關(guān)方法是解題

關(guān)鍵.

7.二次函數(shù)y=ax2+法+。的圖象如圖所示,下列結(jié)論第集的是()

C.c>0D.b1-4?c>0

【答案】B

【解析】

【分析】

據(jù)拋物線的開口方向得出a的符號,可判斷A;根據(jù)拋物線的對稱軸在y軸的右側(cè),a,b異號,得出b的

符號,可判斷B;根據(jù)拋物線與y軸的交點情況得到c的符號,可判斷C;根據(jù)拋物線與x軸交點情況得到

〃_4ac的符號,可判斷D.

【詳解】解:A.由二次函數(shù)的圖象開口向下可得a<0,故A正確;

B.=---->0,62<0,.,./?>0,故B錯誤;

2a

C.圖象與y軸相交于正半軸,所以c>0,故C正確;

D.圖象與x軸有兩個交點,所以從-4ac>0,故D正確.

故選:B.

【點睛】本題考查二次函數(shù)圖象與系數(shù)關(guān)系.對于二次函數(shù)y=ax2+bx+c(a翔)來說,①二次項系數(shù)a決定

拋物線的開口方向和大小.當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線開口向下;|a|還可以決定開口

大小,|a|越大開口就越小.②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.當(dāng)a與b同號時(即

ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c

決定拋物線與y軸交點.拋物線與y軸交于(0,c).④拋物線與x軸交點個數(shù).△=b?-4ac>0時,拋物線

與x軸有2個交點;A=b2-4ac=0時,拋物線與x軸有1個交點;A=b2-4ac<0時,拋物線與x軸無交點.

8.樣本數(shù)據(jù)4,m,5,n,9的平均數(shù)是6,眾數(shù)是9,則這組數(shù)據(jù)的中位數(shù)是()

A.3B.4C.5D.9

【答案】C

【解析】

【分析】

先判斷出m,n中至少有一個是9,再用平均數(shù)求出機+〃=12,即可求出這兩個數(shù),由中位數(shù)的定義排序

后求中位數(shù)即可.

【詳解】解:;一組數(shù)據(jù)4,m,5,n,9的眾數(shù)為9,

m,n中至少有一個是9,

?.?一組數(shù)據(jù)4,m,5,n,9的平均數(shù)為6,

4+/〃+5+〃+9,

------------=6

5

m+n=12

.,.m,n中一個是9,另一個是3

這組數(shù)按從小到大排列為:3,4,5,9,9.

這組數(shù)的中位數(shù)為:5.

故選:C.

【點睛】本題考查了眾數(shù)、平均數(shù)和中位數(shù)的知識.能結(jié)合平均數(shù)和眾數(shù)的定義對這組數(shù)據(jù)正確分析是解決

此題的關(guān)鍵.

9.如圖,「ABC中,DEHBC,若49:38=1:2,口ADE的周長是6,則口48。的周長是()

A.6B.12C.18D.24

【答案】C

【解析】

【分析】

根據(jù)4):。8=1:2可得出4):43=1:3,根據(jù)£>£〃3??勺C明4人口£6/^^(:,再根據(jù)相似三角形的性質(zhì)

即可求解.

【詳解】:AD:DB=1:2

:.AD:AB-1:3

?:DEHBC

:.AADE^AABC,相似比為:1:3

.匾_y

^AABC3

.??□ABC的周長是:6-1=18.

故選:C

【點睛】本題考查比例的性質(zhì),相似三角形的性質(zhì)與判定.掌握相似三角形周長比等于相似比是解決此題的

關(guān)鍵.

L的大小順序是()

10.當(dāng)OVxVl時,x2>X、

X

211o1091

A.x<x<—B.—<x<x"C.—<x<xD.x<x<—

XXXX

【答案】A

【解析】

分析:先在不等式0<x<l的兩邊都乘上x,再在不等式0<x<l的兩邊都除以x,根據(jù)所得結(jié)果進行判斷

即可.

詳解:當(dāng)0<x<l時,

在不等式OVx<1的兩邊都乘上x,可得0<x2〈x,

在不等式0<x<l的兩邊都除以x,可得

X

又???xVl,

;.X2、X、L的大小順序是:X2<X<-.

XX

故選A.

點睛:本題主要考查了不等式,解決問題的關(guān)鍵是掌握不等式的基本性質(zhì).不等式的兩邊同時乘以(或除

以)同一個正數(shù),不等號的方向不變,即:若a>b,且m>0,那么am>bm或q>2.

mm

二、填空題(本大題共4個小題,每小題4分,共16分,答案寫在答題卡上)

ll.i+M(73+1)(73-1)的結(jié)果等于.

【答案】2

【解析】

【分析】

根據(jù)平方差公式計算即可.

【詳解】解:原式=3-1=2.

故答案為2.

【點睛】本題考查了二次根式的混合運算,熟記平方差公式是解題的關(guān)鍵.

12.如圖,等邊口。鉆的邊長為2,則點B的坐標(biāo)為一.

【答案】(1,6).

【解析】

【分析】

過B作BDJ_OA于D,則/BDO=90。,根據(jù)等邊三角形性質(zhì)求出0D,根據(jù)勾股定理求出BD,即可得出答

案.

【詳解】解:如圖,過B作BDLOA于D,則/BDO=90。,

,-.OD=AD=-OA=-x2=\

22

在RsBDO中,由勾股定理得:BD=J爰-C="

.?.點B的坐標(biāo)為:(1,73).

故答案為:(1,百).

【點睛】本題考查了等邊三角形的性質(zhì),坐標(biāo)與圖形和勾股定理.能正確作出輔助線,構(gòu)造R2BDO是解決

此題的關(guān)鍵.

13.若=2,則的值等于.

a3b

【答案】

【解析】

【分析】

根據(jù)2=2可得2=3,然后利用分比性質(zhì)即可得解.

a3b2

【詳解】解:

a3

.a3

—=一

b2

.a-b3-21

..----=----=—.

b22

故答案為:—.

2

【點睛】本題考查比例的性質(zhì).熟練掌握分比性質(zhì)(如果3=£,則巴a=£二色)是解決此題的關(guān)鍵.

baba

14.如圖,AB是。O的弦,半徑OCLA8于點力,若。。的半徑為10,A8=16,則CO的長是

B

【答案】4

【解析】

【分析】

連接04,如圖,利用垂徑定理得到AQ=8O=!A8=8,再利用勾股定理計算出0£>,然后計算。C-0。

2

即可.

【詳解】解:連接04如圖,

,/0CVAB,

:.AD=BD^—AB^416=8,

22

在RtA0AD中,0D=7102-82=6,

:.CD=OC-OD=W-6=4.

故答案為:4.

【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.

三、解答題(本大題共6個小題,共54分,解答過程寫在答題卡上)

15.(1)計算(—2)3-J27+|1-6sin60|+(2019~〃)°.

i…?x—1'+6x+9

(2)先化簡,再求值:2-------+-----------,其中x=-l.

(x+1)x2-1

r—1

【答案】(1)-8;(2)化簡為:-一,結(jié)果為:一1.

x+3

【解析】

【分析】

(1)原式第一項利用乘方進行計算,第二項化簡二次根式,第三項絕對值內(nèi)利用特殊角的三角函數(shù)值計算

后化簡絕對值,第四項利用零指數(shù)'基進行計算,將各自計算的結(jié)果相加(減);

(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可.

【詳解】解:(1)原式=-8-+1-6x^^

+1

=-8-36+36—1+1

=-8;

(2)原式=(上2x士+2二十q北

x+1X+1(X+1)(X-1)

_X+3E(X+1)(X-1)

x+1(x+3)-

_x-l

x+3

當(dāng)x=-1時,原式=―-~~-=-1.

-1+3

【點睛】本題考查實數(shù)的混合運算,分式的化簡求值.(1)中能根據(jù)乘方、二次根式的性質(zhì)、絕對值、三角

函數(shù)、零指數(shù)基分別計算是解決此問的關(guān)鍵;(2)中熟練掌握分式的混合運算順序和運算法則是解決此問

的關(guān)鍵.

16.已知2+8是方程*2-4x+c=0的一個根,求方程的另一個根及c的值.

【答案】X1=2-百,c=l

【解析】

試題分析:設(shè)另一根為XI,由根與系數(shù)的關(guān)系得,兩根和為4,求得XI,再根據(jù)兩根積求得常數(shù)項c.

試題解析:設(shè)另一根為XI,由根與系數(shù)的關(guān)系得:

2+^3+X]=4

X]=2-8

???(2-揚(2+揚=。

c—\

考點:根與系數(shù)的關(guān)系.

17.小明調(diào)查了本校九年級300名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計圖的一部分如圖:

(2)求扇形統(tǒng)計圖中表示“步行”的扇形圓心角的度數(shù);

(3)請估計在全校1200名學(xué)生中乘公交的學(xué)生人數(shù).

【答案】(1)補全條形統(tǒng)計圖見解析;(2)“步行”的扇形圓心角的度數(shù)為60。;(3)1200名學(xué)生中乘公交的

人數(shù)約為560人.

【解析】

【分析】

(1)先計算乘公交的學(xué)生數(shù)=303步行人數(shù)-騎自行車人數(shù)-乘私車人數(shù),據(jù)此補充條形統(tǒng)計圖即可;

(2)先計算步行所占調(diào)查人數(shù)的比,再計算步行扇形圓心角的度數(shù);

(3)先計算乘公交的學(xué)生占調(diào)查學(xué)生的比例,再估計1200名學(xué)生中乘公交的人數(shù).

【詳解】(1)乘公交的人數(shù)為:300-50-80-30=140(人)

補全的條形圖如圖所示:

:360°X—=60°;

300

(3)因為調(diào)查的九年級300名學(xué)生中,乘公交的學(xué)生有140人,

所以乘公交的學(xué)生占調(diào)查學(xué)生的比例為:—,

30015

7

所以1200名學(xué)生中乘公交的人數(shù)約為:—X1200=560A.

答:1200名學(xué)生中乘公交的人數(shù)約為560人.

【點睛】本題考查條形統(tǒng)計圖,扇形統(tǒng)計圖,用樣本估計總體.能讀懂條形圖和扇形圖,從中提取有用信息

是解決本題的關(guān)鍵.

18.如圖,有一個三角形的鋼架ABC,乙4=30°,NC=45°,AC=2(6+l)m.請計算說明,工人師傅

搬運此鋼架能否通過一個直徑為2.4m的圓形門?

【答案】工人師傅搬運此鋼架能通過一個直徑為2.4m的圓形門.

【解析】

【分析】

過B作BDLAC于D,設(shè)BD=xm,解直角三角形求出A。==x,根據(jù)AD+C£)=AC得出方

程,求出方程即可求出BD的長度,與2.4m比較即可.

【詳解】解:工人師傅搬運此鋼架能通過一個直徑為2.4m的圓形門,

理由是:過B作BDLAC于D,

VAB>BD,BOBD,AOAB,

求出BD長和2.4m比較即可,

設(shè)BD=xm,

VZA=30°,ZC=45°,

???在RtAABD和RtABDC中

DC=BD=xm,AD=y/3BD=至txm,

,/AC=2(G+l)/n,

x+\f3x=2(5/3+1),

解得x=2,即BD=2m<2.4m,

???工人師傅搬運此鋼架能通過一個直徑為2.4m的圓形門.

【點睛】本題考查了解直角三角形的應(yīng)用,一元一次方程的應(yīng)用.能正確作出輔助線,構(gòu)造RSABD和

RtABDC是解決此題的關(guān)鍵.

19.如圖,已知三角形OAB的頂點B在x軸的負(fù)半軸上,ABLOB,點A的坐標(biāo)為(T,2)),雙曲線

k

y=—(k<0)的一支經(jīng)過。4邊的中點C,且與AB相交于點D.

x

(1)求此雙曲線的函數(shù)表達式;

(2)連結(jié)8,求[]AOD的面積.

【答案】(I)y=—;(2)3.

x

【解析】

【分析】

(1)根據(jù)C為OA的中點,由A點的坐標(biāo)求出C點坐標(biāo),根據(jù)C點坐標(biāo)利用待定系數(shù)法可求雙曲線的函

數(shù)表達式;

⑵根據(jù)S1M8=-SADBO,分別求出SAAB。和SA/MO即可求出!AOD的面積.

【詳解】(1)..?點A的坐標(biāo)為(-4,2),C為0A的中點,

???(2點的坐標(biāo)為(一2,1),

將C(—2,1)代入y=K(k<0)中得1=上,

x-2

解得k=-2,

所以,此雙曲線的函數(shù)表達式為:y:

X

(2)VAB1OB,D點在雙曲線>=2上

X

NJtfU2ZVIDCZ22

,?SMOD—SMlj0—SADIi0=4—1=3

故口AOD的面積為3.

【點睛】本題考查反比例函數(shù)與幾何綜合,反比例函數(shù)比例系數(shù)k的幾何意義及應(yīng)用.(1)中能利用C為

0A的中點求出點C坐標(biāo)是解決此間的關(guān)鍵;(2)中理解過反比例函數(shù)圖象一點,作任一坐標(biāo)軸的垂線,并

連接原點,圍成的三角形的面積為一是解決此間的關(guān)鍵.

2

20.將一副三角板RtZVlBO與RtaACB(其中/ABD=NACB=90°,ZD=60°,NABC=45°)如圖擺

放,Rtz^AB。中N。所對的直角邊與RtZ\ACB的斜邊恰好重合.以AB為直徑的圓經(jīng)過點C,且與AO相交

于點E,連接EB,連接CE并延長交BO于F.

(1)求證:EF平分NBED;

(2)求aBE尸與尸的面積的比值.

【答案】(1)見解析;(2)乖)

【解析】

【分析】

(1)利用圓周角定理證明NAEC=/ABC=45°即可解決問題.

(2)首先證明8E=J^OE,再利用三角形的面積公式計算即可.

【詳解】(1)證明:':CA=CB,ZACB=90°,

...NABC=/AEC=45°,

:AB是直徑,

:.NAEB=/BED=90°,

VZAEC=ZDEF=45°,

;.FEB=NFED=45°,

...EF平分/BED.

(2)解:VZB£D=90°,Z£>=60°,

BE

tanZI>=---=,3r,

DE

*.*S^BEF=--?BE*EF*sin45°,S&EDF=-,Z)E*EF*sin45

22

SBEF_BE__r-

【點睛】本題考查圓周角定理、三角形的面積和三角函數(shù),解題的關(guān)鍵是掌握圓周角定理、三角形的面積

和三角函數(shù)的使用.

四、填空題(本大題共5個小題,每小題4分,共20分,答案寫在答題卡上)B卷(共50分)

21.己知a為實數(shù),那么J萬等于____.

【答案】0

【解析】

【分析】

根據(jù)非負(fù)數(shù)性質(zhì),只有a=0時,有意義,可求根式的值.

【詳解】解:根據(jù)非負(fù)數(shù)的性質(zhì)a2N0,根據(jù)二次根式的意義,-a2K),

故只有a=0時,J丁有意義,

所以,J-/=0.

故填:0.

【點睛】考查了算術(shù)平方根.注意:平方數(shù)和算術(shù)平方根都是非負(fù)數(shù),這是解答此題的關(guān)鍵.

22.在試制某種洗發(fā)液新品種時,需要選用兩種不同的添加劑.現(xiàn)有芳香度分別為0,1,2,3,4,5的六種

添加劑可供選用.根據(jù)試驗設(shè)計原理,通常要先從芳香度為0,1,2的三種添加劑中隨機選取一種,再從芳

香度為3,4,5的三種添加劑中隨機選取一種,進行搭配試驗,則芳香度之和等于5的概率為—.

【答案】--

3

【解析】

【分析】

列舉出所有情況,讓芳香度之和等于5的情況數(shù)除以總情況數(shù)即為所求的概率.

【詳解】解:列表如下:

第二次第一次012

3345

4456

5567

31

所有可能出現(xiàn)的結(jié)果共有9種,芳香度之和等于5的結(jié)果有3種,故概率為一=一.

93

故答案為:-

3

【點睛】考查的是用列表法或樹狀圖法求概率,能根據(jù)題意利用列表法或樹狀圖法列出所有可能的結(jié)果是

解決此題的關(guān)鍵.概率=所求情況數(shù)與總情況數(shù)之比.

23.如圖,在平面直角坐標(biāo)系中,直線4:y=-2x與反比例函數(shù)y=與的圖象交于A,B兩點(點A在點B

2x

1k

左側(cè)),已知A點的縱坐標(biāo)是1:將直線4:y=—-X沿y向上平移后的直線6與反比例函數(shù)y=—在第二

2x

象限內(nèi)交于點C,如果IZABC的面積為3,則平移后的直線4的函數(shù)表達式為.

【解析】

【分析】

先求出A點坐標(biāo),根據(jù)題意可得A、B關(guān)于原點對稱,求出B點坐標(biāo).設(shè)平移后的直線12與y軸交于點D,

連接AD和BD,可知AABC的面積與AABD的面積相等.由此可求出D點坐標(biāo).直線4的一次項系數(shù)與直線

/,的一次項系數(shù)相同,它的常數(shù)項即為D點的縱坐標(biāo).

【詳解】解:???直線4:y=—;x經(jīng)過A點,且A點縱坐標(biāo)是1,

?,.當(dāng)y=l時,x=-2,

A(-2,l),

V反比例函數(shù)與正比例函數(shù)都關(guān)于原點中心對稱,

B(2,-l)

如下圖,設(shè)平移后的直線12與y軸交于點D,連接AD和BD,

根據(jù)平移的性質(zhì)"4,

...AABC的面積與AABD的面積相等,

???△ABC的面積為3,

???SA0/)+S"=3,即:。。(|“+同)=3,

13

???一OOx4=3,解得。。二一,

22

13

即平移后的直線A的函數(shù)表達式為:y=--x+-.

13

故答案為:y=—x4—.

22

【點睛】本題考查反比例函數(shù)與一次函數(shù)交點問題,一次函數(shù)的平移,一次函數(shù)與幾何問題.本題的關(guān)鍵點

有兩個①根據(jù)正比例函數(shù)與反比例函數(shù)的對稱性求得B點坐標(biāo);②構(gòu)造^ABD,依據(jù)AABC的面積與aABD

的面積相等,得到D點的坐標(biāo).

24.如圖,等邊三角形ABC中,AB=3,點D是CB延長線上一點,且BD=1,點E在章年AC上,當(dāng)

NBAD=NCDE時,AE的長為.

13

【答案】2或9.

3

【解析】

【分析】

分①在線段AC上,②在線段AC的延長線上兩種情況討論.對于①作EF//AB與BC相交于F,證明

△DFESAABD,利用相似三角形對應(yīng)邊相等可求得EC,即也可求得AE;對于②作EF//AB與BC的延長線

交于F,證明^DCEs4ABD,利用相似三角形對應(yīng)邊相等可求得EC,即也可求得AE.

【詳解】解:E點的位置有兩種可能,①在線段AC上,②在線段AC的延長線上.E不可能在CA的延長線

上(因為若E在CA的延長線上由①可知NCDE不可能等于N84Z)).

①若E在線段AC上,如圖作EF//AB與BC相交于F,

VAABC等邊三角形,AB=3,

;.AC=BC=AB=3,ZBAC=ZABC=ZC=60°,

,/ABD=120。,

EF/ZAB,

/CFE=ZABC=60°,ZCEF=ABAC=60°,

...△EFC為等邊三角形,ZEFD=120°,設(shè)EF=FC=EC=x.

?:/BAD=NCDE,ZABD=ZEFD=120°,

ADFE^AABD,

.EFDF

,/BD=1,

???BF=BC-FC+BD=3-x+l=4-x

.?.—二———,解得x=1.

13

.\EF=FC=EC=1,

AAE=AC-EC=3-1=2;

②若E點在線段AC的延長線上,作EF//AB與BC的延長線交于F.

A

與①同理可證AEFC為等邊三角形,ZECD=120°,設(shè)EF=FC=EC=x.

?:NBAD=/CDE,ZABD=ZECD=120°,

.,.△DCE^AABD,

.ECDC

??茄一茄

BD=1,

.,.BD=BC+BD=4,

x44

?*.-=—,解得x——,

133

4

EF=FC=EC=一,

3

413

AE=AC+CE=3+-=—,

33

13

故答案為:2或一.

3

【點睛】本題考查等邊三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定.解題的關(guān)鍵是學(xué)會用分類討論的思

想,學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.

25.如圖,線段AC="+1(其中〃為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作菱形ABMN與菱形BCEF,

點尸在邊上,AB=n,ZABM=60°,連接AM、ME、E4得到△AME.當(dāng)AB=1時,的面積記

為S;當(dāng)AB=2時,/VU/E的面積記為S2;當(dāng)A8=3時,/XAME的面積記為S3;…;當(dāng)48=〃時,△AME

的面積記為S”當(dāng)時,S,,-S?.i=_.

ABC

【答案]2島-6

4

【解析】

【分析】

根據(jù)連接8E,則BE〃AM,利用△AME的面積=△4MB的面積即可得出S,=走〃2,s-、=B(n-1)2,

44

即可得出答案.

【詳解】連接8E.

?.?菱形ABMN及菱形BCEF,ZABM=60°,ZFBC=180°-ZABM=120°,

:.NA//MB,NEBC=60°,

.*.NA8=180°-/ABM=120°,

AZMAB=60°,

ZMAB=NEBC,

:.BE"AM,

:.ZvlME與aAMB同底等高,

/XAME的面積=Z\4MB的面積,

/.當(dāng)AB=n時,△AME的面積記為Sn=S&ABM=心-裙,

4

5?,I=—("-1)2

4

:.當(dāng)"22時,Sn-S.一1=在(?-1)2-且"2=2GL6.

444

故答案為:過捶

【點睛】本題考查三角形面積求法以及菱形的性質(zhì),根據(jù)已知得出正確圖形,得出S與n的關(guān)系是解題關(guān)

鍵.

五、解答題(本小題共三個小題,共30分,答案寫在答題卡上)

26.某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元.根據(jù)市場調(diào)查,以單價13元批發(fā)給經(jīng)銷,商銷商愿意經(jīng)

銷5000件,并且表示每降價0.1元,愿意多經(jīng)銷500件.服裝廠決定批發(fā)價在不低于11.4元的前提下,將批

發(fā)價下降O.lx元.

(1)求銷售量y與x的關(guān)系,并求出x的取值范圍;

(2)不考慮其他因素,請問廠家批發(fā)單價是多少時所獲利潤W可以最大?最大利潤為多少?

【答案】(1)y=500x+5000,0<x<16;(2)批發(fā)單價是12元時所獲利潤W可以最大,最大利潤為

20000元.

【解析】

【分析】

(1)根據(jù)銷售量=原銷量+多經(jīng)銷的銷量即可列出函數(shù)關(guān)系式,根據(jù)批發(fā)價在不低于11.4元,可得x的取值

范圍;

(2)根據(jù)利潤亞=銷量x單利潤即可列出函數(shù)關(guān)系式,將函數(shù)化為頂點式,根據(jù)頂點式求最值即可.

【詳解】解:(1)根據(jù)題意:y=500x+5000,

因為批發(fā)價在不低于H.4元,所以13-O.LclH.4,解得E6,

又xNO,所以0WxW16.

所以銷售量y與x的關(guān)系為:y=500x+5000,x的取值范圍為0WxW16;

(2)根據(jù)題意:W=(500x+5000)(13-10-0.U)=-50x2+1OOOx+15000=-50(x-10)2+20000

因為-50<0,所以當(dāng)x=10時(在x取值范圍之內(nèi)),利潤最大為20000元.

因為當(dāng)x=10時,13-0.1x=12元

所以當(dāng)批發(fā)單價是12元時所獲利潤W可以最大,最大利潤為20000元.

【點睛】本題考查一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用.能根據(jù)題意得出等量關(guān)系,根據(jù)等量關(guān)系列出函數(shù)關(guān)

系式是解決此題的關(guān)鍵.

27.已知:口ABC和口ADE均為等腰直角三角形,ZR4C=NDAE=90°,AB=AC,AD=AE,連接

BD,CD,CE.

(1)如圖1所示,線段BD與CE的數(shù)量關(guān)系是,位置關(guān)系是

(2)在圖1中,若點M、P、N分別為。石、DC、的中點,連接BW,PN,MN,請判斷口PMN的

形狀,并說明理由;

(3)如圖2所示,若M、N、P分別為。E、BC、0c上的點,且滿足吧=科=變=1,BD=6,

DEBCDC3

連接PM,PN,MN,則線段MN長度是多少?

【答案】(1)相等,垂直;(2)CPMN為等腰直角三角形,證明見解析;(3)MN=2卮

【解析】

【分析】

(1)延長8口與£<2相交于口證明ZkABD/AACE,根據(jù)全等三角形的性質(zhì)可得BD=CE,NA3£)=NACE,

再進一步證明N。BC+NBCE=90°可得NBFC=90。,由此可證明BO與CE垂直且相等;

(2)結(jié)合(1),根據(jù)中位線的定理,可推出DPMN為等腰直角三角形;

(3)證明△CPNsaCDB,ADPM^ADCE,根據(jù)相似三角形的性質(zhì)可求得NP和MP的值,結(jié)合(2)可

證明/NPM=90。,根據(jù)勾股定理可求得MN的長度.

【詳解】解:(1)如下圖延長BD與EC相交于F,

;□ABC和DADE均為等腰直角三角形,ZBAC=ZDAE=90°,

...NBAD+ZDAC=90°,ZEAC+ADAC=90°,

/BAD=ZEAC,

又?.?AB=AC,AD=AE

.".△ABD^AACE(SAS)

...BD=CE,ZABD=ZACE,

ZBAC=90°

ZABC+ZACB=90°,

:.ZABD+ZDBC+ZACB=90°

:.ZACE+NOBC+ZACB=90。,即NDBC+NBCE=90。

/.ZBFC=90°,即BFA.EC.

故線段30與CE的數(shù)量關(guān)系是相等,位置關(guān)系是垂直.答案為:相等,垂直.

(2)EJPMN為等腰直角三角形,理由如下:

?.?點M、P、N分別為DE、DC、BC的中點,

;.NP和MP分別為ABCD和AECD的中位線,

NPHBD,NP=-BD,MP//CE,MP=-CE,

22

4DPN=NFDC/DPM=NDCE,

由⑴得BD=CE,

,NP=MP,

由(1)得

/.NFDC+NDCE=90°

ADPN+ZDPM=90°,即ZNPM=90°.

DPMN為等腰直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論