![人工智能(AI)和可解釋人工智能(XAI)在空中交通管理中的應(yīng)用綜述:當(dāng)前趨勢和發(fā)展及未來研究軌跡_第1頁](http://file4.renrendoc.com/view/38157be370235f2e6cb1365f1ac1c686/38157be370235f2e6cb1365f1ac1c6861.gif)
![人工智能(AI)和可解釋人工智能(XAI)在空中交通管理中的應(yīng)用綜述:當(dāng)前趨勢和發(fā)展及未來研究軌跡_第2頁](http://file4.renrendoc.com/view/38157be370235f2e6cb1365f1ac1c686/38157be370235f2e6cb1365f1ac1c6862.gif)
![人工智能(AI)和可解釋人工智能(XAI)在空中交通管理中的應(yīng)用綜述:當(dāng)前趨勢和發(fā)展及未來研究軌跡_第3頁](http://file4.renrendoc.com/view/38157be370235f2e6cb1365f1ac1c686/38157be370235f2e6cb1365f1ac1c6863.gif)
![人工智能(AI)和可解釋人工智能(XAI)在空中交通管理中的應(yīng)用綜述:當(dāng)前趨勢和發(fā)展及未來研究軌跡_第4頁](http://file4.renrendoc.com/view/38157be370235f2e6cb1365f1ac1c686/38157be370235f2e6cb1365f1ac1c6864.gif)
![人工智能(AI)和可解釋人工智能(XAI)在空中交通管理中的應(yīng)用綜述:當(dāng)前趨勢和發(fā)展及未來研究軌跡_第5頁](http://file4.renrendoc.com/view/38157be370235f2e6cb1365f1ac1c686/38157be370235f2e6cb1365f1ac1c6865.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
applied
sciences
/journal/applsci
Appl.Sci.2022,12,1295.
/10.3390/app12031295
Review
ASurveyonArti?cialIntelligence(AI)andeXplainableAIinAirTraf?cManagement:CurrentTrendsandDevelopmentwithFutureResearchTrajectory
AugustinDegas1,*,MirRiyanulIslam2,*,ChristopheHurter1,ShaibalBarua2,HamidurRahman2,MineshPoudel1,DanieleRuscio3,MobyenUddinAhmed2,ShahinaBegum2,MdAquifRahman2,StefanoBonelli3,GiuliaCartocci4,GianlucaDiFlumeri4,GianlucaBorghini4,FabioBabiloni4andPietroAricó4
updates
checkfor
Citation:Degas,A.;Islam,M.R.;Hurter,C.;Barua,S.;Rahman,H.;Poudel,M.;Ruscio,D.;Ahmed,M.U.;Begum,S.;Rahman,M.A.;etal.ASurveyonArti?cialIntelligence(AI)andeXplainableAIinAirTraf?c
Management:CurrentTrendsandDevelopmentwithFutureResearchTrajectory.Appl.Sci.2022,12,1295.
/10.3390/
app12031295
AcademicEditors:MaríaPazSesmeroLorente,PlamenAngelovandJoseAntonioIglesiasMartinez
Received:9December2021
Accepted:17January2022
Published:26January2022Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaf?l-iations.
Copyright:?2022bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticledistributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://
/licenses/by/
4.0/).
1
2
3
4
*
EcoleNationaledel’aviationCivile,7AvenueEdouardBelin,CS54005,CEDEX4,31055Toulouse,France;christophe.hurter@enac.fr(C.H.);minesh.poudel@enac.fr(M.P.)
Arti?cialIntelligenceandIntelligentSystemsResearchGroup,SchoolofInnovation,DesignandEngineering,M?lardalenUniversity,H?gskoleplan1,72220V?ster?s,Sweden;shaibal.barua@mdh.se(S.B.);
hamidur.rahman@mdh.se(H.R.);mobyen.ahmed@mdh.se(M.U.A.);shahina.begum@mdh.se(S.B.);
md.aquif.rahman@mdh.se(M.A.R.)
DeepBlues.r.l.,ViaManin53,00185Rome,Italy;daniele.ruscio@dblue.it(D.R.);
stefano.bonelli@dblue.it(S.B.)
DepartmentofMolecularMedicine,SapienzaUniversityofRome,PiazzaleAldoMoro5,00185Rome,Italy;giulia.cartocci@uniroma1.it(G.C.);gianluca.di?umeri@uniroma1.it(G.D.F.);
gianluca.borghini@uniroma1.it(G.B.);fabio.babiloni@uniroma1.it(F.B.);pietro.arico@uniroma1.it(P.A.)Correspondence:augustin.degas@enac.fr(A.D.);mir.riyanul.islam@mdh.se(M.R.I.)
Abstract:AirTraf?cManagement(ATM)willbemorecomplexinthecomingdecadesduetothegrowthandincreasedcomplexityofaviationandhastobeimprovedinordertomaintainaviationsafety.Itisagreedthatwithoutsigni?cantimprovementinthisdomain,thesafetyobjectivesde?nedbyinternationalorganisationscannotbeachievedandariskofmoreincidents/accidentsisenvisaged.Nowadays,computerscienceplaysamajorroleindatamanagementanddecisionsmadeinATM.Nonetheless,despitethis,Arti?cialIntelligence(AI),whichisoneofthemostresearchedtopicsincomputerscience,hasnotquitereachedendusersinATMdomain.Inthispaper,weanalysethestateoftheartwithregardstousefulnessofAIwithinaviation/ATMdomain.ItincludesresearchworkofthelastdecadeofAIinATM,theextractionofrelevanttrendsandfeatures,andtheextractionofrepresentativedimensions.WeanalysedhowthegeneralandATMeXplainableArti?cialIntelligence(XAI)works,analysingwhereandwhyXAIisneeded,howitiscurrentlyprovided,andthelimitations,thensynthesisethe?ndingsintoaconceptualframework,namedtheDPP(Descriptive,Predictive,Prescriptive)model,andprovideanexampleofitsapplicationinascenarioin2030.ItconcludesthatAIsystemswithinATMneedfurtherresearchfortheiracceptancebyend-users.ThedevelopmentofappropriateXAImethodsincludingthevalidationbyappropriateauthoritiesandend-usersarekeyissuesthatneedstobeaddressed.
Keywords:AirTraf?cManagement(ATM);Arti?cialIntelligence(AI);eXplainableArti?cialIntelli-gence(XAI);user-centricXAI(UCXAI)
1.Introduction
1.1.AirTraf?cManagement
AirTraf?cManagement(ATM)isavastandcomplexdomain[
1
]encompassingallactivitiescarriedouttoensurethesafetyand?uidityofairtraf?c.Inanutshell,ATMaimsatef?cientlymanagingandmaximisingtheuseofthedifferentresourcesavailabletoit—e.g.,theairspaceanditssubdivisionssuchasthesectors(seeFigure
1
),theairroutes(seeFigure
2
),theairport,therunways—bytheusersoftheresources—e.g.,aircrafts,airlines—,inanytime-frameoftheiruseoftheresources—i.e.,inthetaxiphaseintheairport,orany
2of47
Appl.Sci.2022,12,1295
?ightphasesimpli?edbythetripletclimb,cruise,descent—whileensuring?ightsafety[
2
].Thistaskisachievedbymanagingresources,i.e.,AirSpaceManagement(ASM),managingtheglobaldemandbeforeandwhileaircraftsare?ying,i.e.,AirTraf?cFlowandCapacityManagement(ATFCM),andmanaging—avoidingseparationlossesbetweenaircrafts,i.e.,avoidingonetobeintheseparationzoneofanother(seeFigure
3
)—andprovidinglocalinformationtothe?yingaircraft,i.e.,AirTraf?cControl(ATC)[
3
].
Figure1.SectordivisionoftheupperairspaceofFrance[
4
].
Figure2.ExcerptofamapoftheroutenetworkinthesouthofFrance.Routesarede?nedbywaypoints—blackandgreydots.Source:EUROCONTROL.
3of47
Appl.Sci.2022,12,1295
Nowadays,computerscienceplaysamajorroleindatamanagementanddecisionsmadeinATM,andevenifhumansremainasthemainagents,computerscienceremainsimportant,andismorelikelytohaveamorerelevantpartinthefuturewithincreasingairtraf?c—notwithstandingactualCOVIDsituation[
5
]—anditscomplexity—notablywiththeinsertionofnewaerialvehiclessuchasdrones,e-VTOLintotheairspace[
6
].
Arti?cialIntelligence(AI),beingoneofthemostresearchedtopicincomputerscience,shouldbepartofthepicture.
Figure3.Separationzoneofanaircraft.FromDegasetal.[
7
].
1.2.AIandXAIforATM
‘Arti?cialIntelligence’termwas?rstusedin1956forthe?rst“DartmouthSummerResearchProjectonArti?cialIntelligence”,andisgenerallyreferstoanymachinethatexhibitstraitsassociatedwithahumanmind,suchaslearningandproblem-solving.Sincethen,thedisciplinehasknownseveral‘summer’withimportantinterest,and‘winter’,disinterestfromthe?eld,associatedwithscepticism[
8
].Inparticular,AIingeneralhasexperiencedanewbloomduringthe2010s,boostedbytheincreasingaccesstomassivevolumesofdata,andthediscoveryoftheveryhighef?ciencyofcomputergraphicscardprocessorstoacceleratethecalculationoflearningalgorithms[
9
].Thisbloomhasbeenmaterialisedbysomesigni?cantpublicsuccessesandhasboostedfunding,suchasWatson—IBM’sIA—winningthetelevisiongameshowJeopardyagainsttwoofitschampions[
10
],GoogleXbeingabletohaveanAIrecognisecatsonvideos[
11
],orlaterinthedecade,AlphaGo—anditssuccessorAlphaGoZero—beatingoneoftheworldplayersofGo[
12
].EXplainableArti?cialIntelligence(XAI),methodsandtechniquesenablinghumanstounderstand(i)theAIalgorithm(i.e.,globalexplanationorinterpretability),or(ii)itssolutions(i.e.,localexplanationorjusti?cation),beingstronglylinkedtothesystemsitexplains,followedthesametendency,andisactuallyinitsthirdgeneration—accordingtoMulleretal.[
13
].Arti?cialIntelligenceinAirTraf?cManagementroughlyfollowedthesametendencies,withsomedelay.Asthefollowingshows,AIinATMroughlyevolvedfromAIsystemsusedtooptimisethetraf?c,toAIsystemstopredictvariousobjects—likepredicting4Dtrajectories—duringthelastdecade.
DespitehistoricalresearchworkinAIforATM,aresearcherfacingaproblemintheATMdomain—toourknowledge—will?ndnogeneralguidepresentinghowtoresolvethisproblem(orsimilarones),northelimitationofcurrentwork,whichisdetrimentaltothedomainanditsevolution.Somereviewexistinthedomain,buttheyarespecialisedintoacategoryofAIalgorithms—e.g.,meta-heuristics[
14
,
15
],multi-agentsystems[
16
]—,focusedonotheraspects,e.g.,communications[
17
],orareoutdated[
18
],andfocusmoreonthetechniquesthantheintegrationfortheendusers.
Unfortunately,despiteseveralresearchworkalreadycarriedinAIforATMdomain,ithasnotbeen‘fullyoperational’norhasitbroughtanybene?tstoendusers.SlowprogresswithintheuseofAIintheATMdomainisexplainablebythefactthattheATMdomainisacriticaldomainwithlifeatstake,andthatsafetyisthetopmostpriority.Historically,safetyhasbeenachievedinATMwithhuman-in-the-loop—inparticularbutnotrestrictedto,AirTraf?cController(ATCO)—,andwillmostlikely,ascontendbytheauthors,evolvebydesigningtightlyhuman-centeredsystems,requiringthosesystemstobeunderstandablebytheend-user,andtoadapttoitscharacteristics—mental
4of47
Appl.Sci.2022,12,1295
andphysical—andtoitspsychologicalstate.Forexample,iftheoperator’sworkloadisexceedstheircognitivecapacity,orifsomekindofincapacitationisoccurring,theircognitivestatecouldbeautomaticallydetectedbythesystem,andusedbythisassessmenttoexecuteactionsautonomouslyalonganescalatingscaleofautomation(i.e.,adaptiveautomation)[
19
,
20
].Inotherdomainssuchashealthcareandcriminaljustice,amongothers,theincreasinginterestinAItosupporthigh-consequencehumandecisionshasspurredthe?eldofXAIandUser-CentriceXplainableArti?cialIntelligence(UCXAI)[
21
]—UserCenteredDesign(UCD)referstothemethodsemployedwhendesigningsystemsforend-userstovalidatenovelalgorithms/workingmethods/interactiontechniques[
22
–
25
].ThisprimordialaspectisyettobefullyassessedinATM,buttheinterestisgrowing[
26
,
27
].
Basedonthetwopreviousobservations,thegoalofthisarticleistodepictthetrendsofAIandXAI,andsetthetrajectorythattheseworksmusttakeinordertoreachend-users.Ourmainresearchquestionsstemfromthetwopreviousobservations:
?RQ1:WhatarethecurrenttrendsofAIandXAIinATMtasks?
?RQ2:WhatarethelimitationthatarisefromtheuseofAIandXAIinATMtasks?
?RQ3:HowcouldthegeneralXAI?eldbene?tAIandXAIinATM?
?RQ4:WhatlimitationmayarisefromtheuseofgeneralXAIinATM?
?RQ5:WhatshouldthetrajectoryofAIandXAIbeforthisdomain?
Toanswerthesequestions,thisarticleisdividedintotwoparts:(i)The?rstpartofthisarticleisdedicatedtothereviewofresearchworkofthelastdecadeofAIin
ATM,presentingthemethodologyemployed(Section
2
),theextractionofrelevanttrendsandfeatures,theclusteringoftheseworkintorepresentativegroups(Section
3
),andtheextractionofrepresentativedimensions,allowingustocreateadesignspacerepresentingthoseworks,usedthentoanalysethepublications(Section
4
);(ii)thesecondpartofthisarticleisbasedonthedimensionsextractedinthe?rstpart,toanalysegeneralandATMXAIwork,analysingwhereandwhyXAIisneeded,howitiscurrentlyprovided,andthelimitations(Sections
5
and
6
),thensynthesisethe?ndingsintoaconceptualframework(Section
7
),thatisthenappliedtodifferentscenarios(Section
8
).Finally,weconcludethedifferent?ndingsofthisarticle(Section
9
).
2.PaperSelection
Thissectionprovidesdetailsfortheprocedureinvolvedintheselection,inclusion,andexclusionofresearcharticles.ThereviewwasconductedusingthePreferredReportingItemsforSystematicReviewsandMeta-Analysis(PRISMA)guidelines[
28
].Overall,thereviewwasperformedusingdifferentwell-rankedconferencesandjournals,judgerepre-sentativeofthedomain,namely,TransportationResearchPartC:EmergingTechnologies(TR_C)andIEEETransactionsonIntelligentTransportationSystems(IEEETrans.onITS)(toptwojournalonTransportationaccordingtoGoogleScholarmetrics[
29
]),JournalofAirTransportManagement(JATM)(the?rstATMjournal[
29
]),andInternationalConferenceonResearchinAirTransportation(ICRAT)andAirTraf?cManagementResearchandDevelopmentSeminar(ATMseminar)(thetwoATMconferencessupportedbyEURO-CONTROLandtheFederalAviationAdministration).Figure
4
describesthecompletepipelineofthepaperselection.
2.1.Identi?cation
ThefocusofthisresearchisonEnglishpublishedarticlesfrom2010untiltheendofDecember2021.Theyear2010hasbeendeterminedasastartingpointofthesearchingprocesssoastobeabletodeterminetrendsandevolutionofthevast?eldfromthebeginningofthenewbloomofAIinterest—seeSection
1.2
—,andbesuretofullycapturetheessenceoftheresearchspace.Apartfromthis,theinclusionandexclusioncriteriaofthisreviewareshowninTable
1
.
5of47
Appl.Sci.2022,12,1295
Figure4.PRISMA?owofthereviewmadeonInternationalConferenceonResearchinAirTrans-portation(ICRAT),AirTraf?cManagementResearchandDevelopmentSeminar(ATMseminar),TransportationResearchPartC:EmergingTechnologies(TR_C),JournalofAirTransportManagement(JATM),andIEEETransactionsonIntelligentTransportationSystems(IEEETrans.onITS).
Tobe?rstlyselected(Identi?cation),articlesofthedifferentjournalsandconferencesrequired:(i)TobeintheATMdomain,acharacteristicthatiseitherobtainedbythedatabaseused—i.e.,ATMspeci?cconferencesorjournals,orusingkeywordsto?lter,indetail,“airtraf?c”O(jiān)R“airplane”O(jiān)R“aircraft”,namedinthefollowing“ATM_Filter”;and(ii)toworkwiththeAIalgorithm,characteristicthatwas?lteredusinggeneralregularexpression“Predict*”O(jiān)R“Estimat*”O(jiān)R“Optimi*”O(jiān)R“Cluster*”O(jiān)R“Analy*”O(jiān)R“Visu*”O(jiān)R“Learn*”O(jiān)R“Explain*”O(jiān)R“Model*”O(jiān)R“Plan*”O(jiān)R“Con?ict”O(jiān)R“Classif*”.Thenumberofarticlesidenti?edpersourcearerepresentedinFigure
4
,anddetailsaboutthekeyword?lterscatchesarerepresentedinTable
2
.Thekeywordsusedwere?rstre?nedinapreliminarystudyperformedtoplanasystematicreview,usingdifferentkeyword-extractiontechniques,ATMdomaininsightsfrominterviewsperformed,andgeneralauthordomainknowledge.Inanutshell,thesekeywordsrepresentmaintasksforwhichAIcanbeemployedinanATM,alongwithsomespeci?cAIkeywords,suchasthetheoryorframeworkemployed—e.g.,neuralnetwork,geneticalgorithm.
Table1.Exclusionandinclusioncriteria.
Criteria
Principles
Inclusion
?Paperspublishedfrom2010toendof2021.
?Fulltext.
?Peer-reviewedstudies.
?PaperintheATMdomain.
?PaperintheAIdomain.
?Paperanswersthede?nedresearchquestions.
Exclusion
?PapersnotintheEnglishlanguage.
?Reviewpapers.
?Paperslessthan4pages.
?Notpeerreviewedstudies.
6of47
Appl.Sci.2022,12,1295
Table2.Paperselectionresultattheidenti?cationphase.
Keyword
ICRAT
ATMSeminar
TR_C
JATM
IEEETrans.onITS
Total
“Predict*”
39
23
15
18
5
100
“Estimat*”
17
12
6
20
2
57
“Optim*”
26
27
24
26
5
108
“Cluster*”
5
3
0
7
0
15
“Analy*”
33
38
12
171
1
255
“Visual*”
2
2
1
1
0
6
“Learn*”
13
11
10
14
4
52
“Explain*”
0
0
0
3
0
3
“Model*“
38
43
30
134
4
249
“Plan*”
9
9
12
37
0
67
“Con?ict”
17
13
9
2
5
46
“Classif*”
1
1
0
8
0
10
Total(withoutduplication)
160
141
88
371
18
778
2.2.Screening
Thereviewprocessusedconferencesandjournaldatabases,duplicatescameonlyfromexternaldatabasesfrompreviouswork,andforwardbackwardreferencesearching,hencethelownumberofexclusionforduplication(29excluded).
Selectedpaperswerethenmanuallyscreenedforrelevance,basedona?rstsuper?-cialreadingusinganempiricalkeywordlist—containingmostlyprimarykeywordsandmethodsemployed—resultingintheexclusionof383papers.
2.3.Eligibility
Theremaining366articleswereselectedforafull-textreviewandcontentanalysis.Forinclusioninthe?nallist,articlesmustberelatedwithATM—excludingexamplearticleswheredronesareusedforsurveillance—,andAIorXAI.Theseinclusioncriteriaresultedin257relevantarticles.Inregardtoexclusioncriteria,thearticlesaboutpassengerexperienceandsecuritywerenotincludedinthisreview,asthiswasnotthecorefocusofthisstudy.Furthermore,onlythearticleswritteninEnglishwereconsideredinthisreview.
2.4.Inclusion
Inclusionratewashighlydifferentdependingonthesourcesofthepapers.Ononeside,paperscomingfromATMdomainconferences—ICRATandATMseminar—onlyneededtobeconsistentwiththeAI?eld,hencethelowexclusionrateattheidenti?cationphase—285outof383+343=726,roughly39percent,seeFigure
4
.
Ontheotherside,paperscomingfrommoregeneraljournals—TR_CandIEEETrans.onITS—neededtobeconsistentwithboththeAIandATMdomain,hencethehighexclusionrateattheidenti?cationphase—(n=7186),around98.5percent.Inbetween,paperscomingfromtheJournalofAirTransportManagementtargetingATMandotherAeronauticalissues,theexclusionratewasmedium-high—(n=870),70percent.
Pastthisphase,exclusionsweremostlyinthescreeningandintheeligibilityphases,duetothefactthatAItechniqueswerenotused:Inthescreeningphase—n=383,roughly51.1percent—clearlyde?nedinthetitle/abstracttheuseoftechniquesnotfromtheAI?eld;andintheeligibilityphase—n=109,around29.8percentdidnotmeetthecriteria.Asaresult,theoverallexclusionrateisabitlowcomparedtosomesystematicreview,butstillhighingeneral—around97.2percent.
3.PaperClustering
Thissectionprovidesdetailsaboutdataextractionfromthepublications,thedifferentstatisticsontheextracteddata,andtheclusteringofthepublicationsintorepresentativegroups.
7of47
Appl.Sci.2022,12,1295
3.1.DataExtraction
Theaimofthissectionistocreateaninformationextractionformtoderiveoutthe
accuratedatafromtheselectedarticles.Inthisstep,therelevantdatawerederivedfromselectedarticlesthroughtheuseofspreadsheetsandreferencemanagementsoftware.
Thefollowingprimaryfeatureswereextractedinthissystematicreview:Author(s),Publication,Year,TitleoftheStudy,SourceType,TheoryorFramework,Objective,and
Factors.ThedescriptionoftheseitemsispresentedinTable
3
.
Table3.Extractedfeaturesfromprimarypapers.
Data
Description
Author(s)
Nameoftheauthor(s).
PublicationYear
Theyearofpublishingthepaper.
TitleoftheStudy
Thetitleofeachpaperthatisvisibleinthesearchingstep.
SourceType
Journal,bookchapter,andconferenceproceeding.
AITheoryorFramework
TheAItheoryorframeworkthatthestudyhadadopted,e.g.,NeuralNetwork(NN).
XAITheoryorFramework
TheXAItheoryorframeworkthatthestudyhadadopted,e.g.,LIME.
Objective
Themainobjectiveofpapers.
Factors
Theexaminedfactorsofthestudies,detailedinTable
4
.
Theextractedfactorswerethenre?nedinapreliminarystudyperformedtoplanthesystematicreview—andofcourseadaptedifneededintherestofthestudy—,usingdifferentkeywordextractiontechniques,ATMdomaininsightsfrominterviewsperformed,andgeneralauthordomainknowledge.There?nedextractedfactorsarepresentedinTable
4
.
3.2.FirstDataClusteringonAdditionalExtractedData
Theclusteringofthepaperwasperformedintwosteps.Thefirststepwasperformedinthepreliminarystudy,andresultedintheadditionalextractedfeaturepresentedinTable
4
.
Indetail,whileextractingthedifferentfeaturesofTable
3
,itseemedpromising,at?rst,tocategorisethepublicationsbythespeci?cpartoftheATMworldeverypublicationwasbene?tingto.However,althoughinteresting,thefeaturewasnotselectiveenoughtoassessanytrendsorcategoriesinthedifferentworks.Nonetheless,itseemedthatthemainObjectivefromTable
3
,wasapromisingfeaturetofullycategorisetheDesignSpaceofAIinATM.Thisclusteringwasperformedbyre?ningtheObjectivefeaturebyextractingthesubject,thetime-frame,andanycomplementaryinformationpiecesaboutthesubjectfromthefeature.ForexamplethefollowingObjective“Predictthefuturelocationofageneralaviationaircraft”from[
30
],canbecutinto“Predict”“thefuture”“l(fā)ocationofageneralaircraft”.Afterthisquitesimplephase,thedifferentextracteddata—i.e.,subject,time-frame,complementaryinformationpieces—haveanalysedandclusteredintomoregeneralcategories.Inanutshell,thecategoriesareregroupedinto“Object”,subdividedinto“Complement”,and,ifany,subdividedinto“Sub-Complement”.AllObjectcategoriesexceptTime-Framearenamedinthefollowing“MaterialObject”andrepresentthegeneralsubjectoftheobjective,namely,“Aircraft”,“Traf?c”,“Airport/ControlledTraf?cRegion(CTR)”,“Airspace”,“ATCO”,and“Pilot”(thedistributionofthepublicationsinfunctionoftheobjectfeatureisrepresentedinFigure
5
).Thesecategorieshavebeencreatedas:(i)Theyrepresentedadistinctpartforpractitioners;and(ii)thepublicationsacrossthosecategoriesappearedtohaveapartialdistinctionofObjectiveandemployedalgorithmsandmethodologies.
8of47
Appl.Sci.2022,12,1295
Table4.Additionalextractedfeatures.
Object
Complement
Sub-Complement
Description
TimeFrame
Pre-Flying
Flying
Post-Analysis
Nottime-framed
ApublicationfocusedonbeforetheAircraftsare
?ying/moving;containstheATMtime-framecalledStategic,Pre-Tactical,andpartofTacticalphase.
ApublicationfocusedonwhileimplicatedAircraftsare?ying.ApublicationfocusedonafterimplicatedAircrafts
havelanded.
Thepublicationisnottimeframed
“MaterialObject”
Aircraft
Traf?c
Airport/CTRTraf?c
Airspace
ATCO
Pilot
State
Thepublicationdealswithanydescriptoroftheactualphysicalstateoftheaircraft,suchasmassorTrueAirSpeed(TAS).
Trajectory
Indicators
Route/FlightPlan4DTrajectory
Thepublicationdealswithanydescriptorofthetrajectory,notrelatedtothedirectphysicalstateoftheAircraft,suchasPhaseofFlight(PoF),orDescentLength.
Thepublicationfocusesonthedescriptionofthe
intended?ight.
Thepublicationfocusesonthedescriptionoftheactual?ight.
Indicators
Thepublicationdealswithanydescriptorofthetraf?c,suchastimebufferseparation,ordelay.
5DTraf?c
Con?ictavoidance
Optimisation
Prediction
Simulation
Analysis
ThepublicationdealswiththeavoidanceofseparationlossesbetweenAircrafts.
Thepublicationdealswiththeoptimisationof
Aircrafttrajectories.
ThepublicationdealswiththepredictionofAircrafttrajectories,andtheirpotentialinteractions.ThepublicationdealswiththesimulationofAircrafttrajectories,andtheirpotentialinteractions.
ThepublicationdealswiththeanalysisofAircrafttrajectories,andtheirpotentialinteractions.
State
Thepublicationdealswithanydescriptorofthestateoftheairport,e.g.,therunwaycon?guration.
GroundTraf?c
Indicators
“5D”Traf?c
Thepublicationdealswithanydescriptorofthegroundtraf?c,e.g.,Taxi-Speed,orEstimatedTake-OffTime(ESOT),ArrivalRunwayOccupancy.
Thepublicationfocusesonthetrajectoriesofthe
taxiingaircrafts
CTRTraf?c
Thepublicationdealswiththearrivalofaircrafts(e.g.,thesequencingofarrivingaircraft),thedeparture,orboth(e.g.,optimisationofdepartureandarrival).
State
StaticStructuralState
StateofEnvironment
Thepublicationdealswithanydescriptorofthestateofallorapartoftheairspace,e.g.,thecapacityofasector,withoutmodifyingit.
Thepublicationfocusesontheweather,thewindoranyotherenvironmentaldescriptor.
Structure
Sector
Route
Thepublicationdealswiththestructureofthesector(s),e.g.,thecon?gurationofthesectors,ortheirgeometricalstructure.Thepublicationdealswiththeroutenetworkstructure.
Demand/CapacityBalancing
Thepublicationfocusesonthebalancingofthedemandandcapacity.
ThepublicationsfocusesontheAirTraf?cCOntroller(ATCO).
ThepublicationfocusesonthePilot.
MostpublicationstargetingtheATCOorthePilotfocusedonpredictingoranalysingtheirbehaviourandtheirdecisions—thecommandforATCOandthe?ightdecisionsforthePilot—,oranalysingtheiraudiotransmissions.Publicationstargetingthosetwocategoriesarelessrepresentedthantheothers(seeFigu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- TAS2940-生命科學(xué)試劑-MCE-8412
- Ocifisertib-hydrochloride-CFI-400945-hydrochloride-生命科學(xué)試劑-MCE-6463
- Dehydrocannabifuran-6-Methyl-9-isopropenyl-3-pentyldibenzofuran-1-ol-生命科學(xué)試劑-MCE-8289
- 7-Methoxy-9-methylfuro-2-3-b-quinoline-4-5-8-9H-trione-生命科學(xué)試劑-MCE-1580
- 3-Methyl-L-tyrosine-生命科學(xué)試劑-MCE-8000
- 二零二五年度虛擬股員工持股計劃協(xié)議
- 二零二五年度煤礦開采權(quán)轉(zhuǎn)讓合同
- 2025年度順豐速運高端物流服務(wù)合同模板
- 施工單位施工合同管理要點
- 疫情下教育變革的啟示-學(xué)校與醫(yī)院合作的必要性與優(yōu)勢分析
- 《鉗工基本知識》課件
- DB63T 2357-2024 ?;烦簝薨踩芾硪?guī)范
- 2022-2023學(xué)年五年級數(shù)學(xué)春季開學(xué)摸底考(四)蘇教版
- 【螞蟻保】2024中國商業(yè)醫(yī)療險發(fā)展研究藍(lán)皮書
- 授信審批部工作計劃及思路
- 財務(wù)管理學(xué)(第10版)課件 第3章 財務(wù)分析
- 小學(xué)語文大單元教學(xué)設(shè)計與實施
- 小學(xué)升初中六年級數(shù)學(xué)考試試卷含答案(達(dá)標(biāo)題)
- 2024年長沙航空職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫完整
- 腫瘤微環(huán)境在癌癥進(jìn)展中的作用研究
- 上海市發(fā)展改革研究院工作人員招考聘用12人公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
評論
0/150
提交評論