




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——數(shù)學(xué)分析講義第一章函數(shù)第一章函數(shù)
一、復(fù)習(xí)指導(dǎo)
(一)基本概念
1.函數(shù)的概念
2.復(fù)合函數(shù)、反函數(shù)的概念
3.有界函數(shù)、無界函數(shù)的概念,遞增(嚴(yán)格遞增)函數(shù)、遞減(嚴(yán)格遞減)函數(shù)的概念,奇函數(shù)、偶函數(shù)的概念,周期函數(shù)、基本周期的概念。
4.基本初等函數(shù)、初等函數(shù)的概念5.鄰域、空心鄰域的概念
(二)基本理論
1.實數(shù)的性質(zhì);2.函數(shù)的四則運(yùn)算性質(zhì);3.反函數(shù)存在的條件
(三)復(fù)習(xí)要求
1.把握幾個重要的等式與不等式
(1)平均值不等式(算術(shù)平均值、幾何平均值、調(diào)和平均值的關(guān)系)
1a1?a12a?a2?????annnaa???a?1?12n?????a1nn2
(2)柯西—許爾瓦茲不等式
nn?n?22代數(shù)形式:??aibi???ai??bi(注意證明方法)
i?1i?1?i?1?bbb22??積分形式:??f(x)g(x)dx???f(x)dx??g(x)dx(注意證明方法)aa?a?2(3)絕對值不等式:
a?b?a?b?a?b;a1?a2?????an?a1?a2?????an??1時,?1?h?n?1?nh
(4)貝努利不等式:當(dāng)h(5)幾個常用不等式
nn?1132n?1??????,n?1n?2242n12n?1(注意證明方法)
11?n?1n!2,
?n?1?n!????2?n1,n!?n2;2!?4!???(2n)!?[(n?1)!]n,ex?1?x,
2nn?1n
1?1?1?1??1??ln?1???,?1???e??1??n?1?n?n?n??n?1?2?????n?(注意證明方法)
(6)幾個常用等式
11n(n?1);12?22?????n2?n(n?1)(2n?1),261
據(jù)此可求2
2?42?????(2n)2與12?32?????(2n?1)2
13?23?????n3?(1?2?????n)2
n(n?1)2???????n,其中??02!11max{a,b}?(a?b?a?b),min{a,b}?(a?b?a?b)
221max{f(x),g(x)}?[f(x)?g(x)?f(x)?g(x)]
21min{f(x),g(x)}?[f(x)?g(x)?f(x)?g(x)]
2?1,則an?(1??)n?1?n??若a
2.理解函數(shù)的概念、函數(shù)的要素
3.探討函數(shù)的定義域、對應(yīng)法則、函數(shù)表達(dá)式與值域4.熟練判斷函數(shù)的相等5.把握函數(shù)的表示方法
6.理解函數(shù)的有界性、單調(diào)性、奇(偶)性與周期性,把握探討這些特性的思想方法與技能7.把握幾個特別分段函數(shù)的定義與基本性質(zhì)(1)符號函數(shù)
?1?sgnx??0??1?x?0x?0,易知x?x?sgnxx?0},圖象見右圖定義域為R,值域為{?1,0,1此函數(shù)為遞增函數(shù)(但不嚴(yán)格遞增)、有界函數(shù)、奇函數(shù)。
此函數(shù)在x?0處無極限,在x?0處不連續(xù),在x?0處不可導(dǎo),在任何區(qū)間上都可積。(注意證明方法)
?1(2)狄利克雷函數(shù)D(x)???0x為有理數(shù)x為無理數(shù)
定義域為R,值域為{0,1};有界函數(shù)、偶函數(shù)、周期函數(shù)(任何有理數(shù)都是它的周期,但無基本周期)。此函數(shù)四處無極限、四處不連續(xù)、四處不可導(dǎo)。(注意證明方法)此函數(shù)在任何區(qū)間上都不可積。(注意證明方法)(3)黎曼函數(shù)
?1?R(x)??n??0m(|m|,n為互質(zhì)的正整數(shù))nx為0,1或無理數(shù)x?定義域為R,值域為[0,1)內(nèi)的有理數(shù),此函數(shù)為有界函數(shù)此函數(shù)在任何點(diǎn)的極限均為0,在無理點(diǎn)連續(xù)、在有理點(diǎn)不連續(xù),四處不可導(dǎo),此函數(shù)在區(qū)間[0,1]上可積且積分值等于0。(注意證明方法)(4)最大整數(shù)部分函數(shù)
f(x)?[x],其中[x]表示不超過x的最大整數(shù)
2
定義域為R,值域為全體整數(shù),遞增函數(shù)圖象如右圖(5)非負(fù)小數(shù)部分函數(shù)
f(x)?x?[x]
-1定義域為R,值域為[0,1),
周期為1的周期函數(shù),圖象如右圖
8.把握復(fù)合函數(shù)的復(fù)合過程與分解9.把握函數(shù)思想及其應(yīng)用:
-2-o4(1)函數(shù)的思想,就是運(yùn)用函數(shù)的方法,必要時引入輔助函數(shù),將常量視為變量、化靜為動、化離散為連續(xù),將所探討的問題轉(zhuǎn)化為函數(shù)問題加以解決的一種思想方法(2)函數(shù)思想的應(yīng)用:
①以函數(shù)為橋梁,實現(xiàn)函數(shù)與方程、不等式間的轉(zhuǎn)化例:證明方程方法:作函數(shù)
x?lnx?2?0在(0,??)內(nèi)至少有兩個實根。exf(x)??lnx?2,應(yīng)用根的存在定理。
e例:證明
|a?b||a||b|??1?|a?b|1?|a|1?|b|f(x)?x,通過探討單調(diào)性得證。1?x11f(0)?0,求證:??f(x)dx???f3(x)dx
??0?0?2方法:構(gòu)造輔助函數(shù)
例:設(shè)函數(shù)
f(x)在[0,1]上可導(dǎo),且0?f?(x)?1,
2tt3方法:令F(t)???f(x)dx???f(x)dx,通過探討單調(diào)性知F(1)?F(0)得證。
??0?0?②以函數(shù)為背景,實現(xiàn)函數(shù)思想在數(shù)列中的應(yīng)用例:求極限lim方法:求limxnn??n
n??x??x,再由數(shù)列極限與函數(shù)極限的關(guān)系得limnn=1
③化離散為連續(xù),解決級數(shù)問題
例:求
1?nn?1(2n?1)2?的和.
?11x2ns(),方法:引入冪級數(shù)s(x)??,則?=n2n?1(2n?1)22n?1n?1?④引入輔助函數(shù),證明有關(guān)問題例:設(shè)函數(shù)
f(x)、g(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)?f(b)?0,證明在(a,b)內(nèi)至少存在
3
一點(diǎn)?,使f?(?)?f(?)g?(?)?0
方法:作輔助函數(shù):F(x)?f(x)eg(x),利用故由羅爾定理。
二、分類題型與解題方法
(一)求函數(shù)的表達(dá)式
求以下函數(shù)的表達(dá)式(1)設(shè)(2)設(shè)
f(x)?x2?3x?5,求f(x)解答:f(x)?x2?x?3
2?f?1?x?1?xx,求
f(x)解答:1(1?1?x2)
x(3)設(shè)
f?x?1x??x2?1?5,求f(x)解答:x2?72xcx,其中a,b,c為常數(shù)且|a|?|b|,求
(4)設(shè)af(x)?bf(1x)?f(x)解答:f(x)?ca2?b2?a???bx??x?(5)設(shè)
?x?1?f(x)?f???2x,其中x?0、x?1,求f(x)
x???x?11,即x?,則x1?t解:令t2?1?f???f(t)?1?t?1?t?即
2?1?…….①f???f(x)?1?x?1?x?在①中令
1u?11?u?1??1?2(u?1)?,即x?,則得f?,??f???1?xu1?uuu?1u????11?x?1?2(x?1)?1….②;由①、②即已知等式可求出f(x)?x??f???x1?xx?x?x?1即
?1?f????1?x?(6)設(shè)解:設(shè)
f(x)?3x2?2limf(x),求f(x)
x?1A?limf(x),則f(x)?3x2?2A,兩邊當(dāng)x?1時取極限,limf(x)?lim3x2?lim2A
x?1x?1x?1即
A?3?2A,可得A??3,故f(x)?3x2?6
(7)設(shè)解:設(shè)
f(x)?x??f(x)dx?2,求f(x)
021A??f(x)dx,則f(x)?Ax2?2;兩邊在[0,1]上積分得:A?011A?23,即
A?3,故
f(x)?3x2?2
(8)設(shè)
f(x)?x2?2?f(x)dx,求f(x)解答:x2?2
0134
(9)設(shè)
f?(?x)?x[f?(x)?1],求f(x)解答:x?1ln(1?x2)?arctgx?c
2(10)設(shè)
f(x)?x2?x?20f(x)dx?2?f(x)dx,求f(x)解答:x2?4x?2
0133(11)設(shè)(12)設(shè)
f?(ex)?1?x,求f(x)解答:xlnx?cf(x)?x??x0f(x?t)dt,求f(x)
0xx0解:令x?t即
?u,則?f(x?t)dt??f(u)d(?u)??f(u)du
0x0xf(x)?x??(13)設(shè)
f(u)du,所以f?(x)?1?f(x),故f(x)?Cex?1,又f(0)?0,故f(x)?ex?1
x02f(x)??f(t)dt?ex,求f(x)
,
2(14)設(shè)解:由
f(x)?exf[?(x)]?1?x且?(x)?0,求?(x)
f[?(x)]?e?(x)?1?x且?(x)?0,得?(x)?ln(1?x)
1?又有l(wèi)n(x)?0得1?x?1,即x?0,所以?(x)?ln(1?x),x?0f(x)在x?0連續(xù),f(1)?3且當(dāng)x?0,y?0時有?xy(15)設(shè)求
f(t)dt?x?y1f(t)dt?y?x1f(t)dt,
f(x)
x解:在已知等式兩邊對y求導(dǎo)得:xf(xy)?xf(y)??令
1f(t)dt
y?1,f(1)?3知xf(x)?3x??x1f(t)dt
3x求導(dǎo)得:所以
f(x)?xf?(x)?3?f(x),即f?(x)?f?(t)dt??x1?x13dt,即f(x)?f(1)?3lnx,故f(x)?3(1?lnx)t(二)求函數(shù)的定義域
求以下函數(shù)的定義域(1)
y?lg(x?1)??1x?1解答:(1,??)
(2)
f(x)??22xsintdt解答:(??,??)t(3)
y?lgsin(?x)解答:{(2k,2k?1)|k?0,?1,?2,???}14y?ln(2x?1)?4?3x解答:(?,]
235
(4)
(5)
y?log(x?1)(16?x2)解答:(1,2)?(2,4)2x?12x?x2解答:?1,2]f(x)?arcsin?2,1??(17ln(2x?1)(6)
設(shè)
f(x)的定義域為[0,1],求以下函數(shù)的定義域:
(1)(3)
2;(2)f(x)解答:[?1,1];f(2x?3)解答:[32,2]f(x?a)?f(x?a),其中a?0解答:當(dāng)0?a?11時為[1?a,a],當(dāng)a?時為?22求以下函數(shù)的定義域:(1)設(shè)
?1,0?x?1,求f(x?3)、f(2x)的定義域解答:①?3?x??1,②0?x?1f(x)???2,1?x?2?2???x,x?0f(x)??x,?(x)?lnx,求f[?(x)]的定義域解答:x?0
???e,x?0(2)設(shè)
(三)判斷函數(shù)的相等
判斷以下函數(shù)是否相等:(1)
f(x)?x?11,g(x)?;解答:不相等
x?1x2?1(2)
f(x)?x2,g(x)?(x)2;解答:不相等f(x)?x?1,g(x)?x?2x?1x?2;解答:不相等
(3)
(4)(5)
f(x)?x2,g(x)?x4解答:相等
f(x)?1?2x,g(y)?1?2y解答:相等
(6)(7)
y?x2y?x2(???x???)與s?t2(???x???)與y?x2(???t???)解答:相等(0?x???)解答:不相等(???x???)解答:相等
(8)
?xy????xx?02與y?xx?0?1(x?0)與y????1|x|(9)y?x(10)
x?0,解答:相等
x?0y?log2x2,y?2log2x解答:不相等
6
(11)
y?sin2x,y?2sinxcosx解答:相等
2d?x(12)y?lnx,y???0|lnt|dt??解答:相等
?dx?(四)函數(shù)初等性質(zhì)的探討
探討以下函數(shù)在指定區(qū)間上的有界性
(1)
x2?1f(x)?4,x?R;
x?1x2?1x2?1??2解:(1)當(dāng)x?1時有0?41x?1x2?1x2?1x2?x2x2?1???1,故f(x)?4當(dāng)x?1時有0?4在R上有界22x?12x2xx?1(2)
f(x)?1x,x?(0,??)
解:由于.?M?0,取x0?11?(0,??),可使f(x0)??M?1?MM?1x0,故
f(x)?1x在(0,??)
上無上界(3)(4)(5)
xsinx1x?R,;解答:因|f(x)|?,故有界;22x?1lnx1f(x)?,x?[,1]解答:因?ln4?f(x)?0,故有界;
x2f(x)?f(x)?tgx,x?[0,)解答:?M?0,取x0?arctg(M?1),可使|f(x0)|?M,故無界
2?判斷以下函數(shù)的奇偶性:(1)
f(x)?ln(x?x2?1);
??1????ln(x2?1?x)??f(x)f(?x)?ln(x?1?x)?ln??2?x?1?x?2解:(1)因
所以
f(x)?ln(x?x2?1)為奇函數(shù)
(2)
1??1f(x)?x?x??
?e?12??ex1?1?11??1????f(?x)??x??x????x?x??x1?????x2e?122e?1e?1??????解:因
?1?1??1?1?x??x?x???x??f(x),所以f(x)??2e?1??e?12?7
1??1x?x??為偶函數(shù)?e?12?
(3)
a?x?1ax?1;解答:奇(4)f(x)?x?x,解答:偶,f(x)??xa?1a?1f(x)?ln(5)
?1,1?x;解答:奇,(6)y??1?x??1,x?0;解答:奇,
x?0(7)
y??x0f(t)dt,其中f(x)為奇函數(shù)解答:偶,
(8)
1??1y?F(x)?x??,其中a?0,a?1,F(xiàn)(x)為奇函數(shù)解答:偶,
?a?12?y?sinx?cosx解答:非奇非偶
(9)
(五)求反函數(shù)與復(fù)合函數(shù)
將以下復(fù)合函數(shù)分解為簡單函數(shù):
(1)
y?|sinx?x2|;(2)y?arcsinln(x2?a2)
(3)
y?21?x2;(4)
y?coslg(x?2)?cosx?2?;(5)y??tglgarcsinx?
5求以下函數(shù)的反函數(shù):(1)設(shè)
y?ax?bcx?d,在什么條件下其反函數(shù)就是它本身;
解答:(1)①ad?bc?0,a??d,②ad?bc?0,a?d且b?0,c?0
(2)
?x,?f(x)??x2,?2x,??ex,f(x)???x,???x?11?x?44?x???,求
f?1(x)解答:f?1?x,???x?1(x)=??x,1?x?16?logx,16?x????2求以下函數(shù)的復(fù)合函數(shù):(1)設(shè)
?x?2,x?1,?(x)??2x?1?x?1,x?0x?0。求
f[?(x)]
解答:
?ex?2,x??1?f[?(x)]?x?2,?1?x?0;
??x2?1?e,0?x?2?x2?1,x?2?(2)設(shè)
x?0?1?x,x??1?2?x,,求f[f(x)]解答:f[f(x)]??f(x)??1,x?01,x??1??f(x)?x1?x2(3)設(shè),求
fn(x)?f(f???f(x))解答:
???????n次x1?nx2
8
(六)雜題
證明以下各題:
(1)證明定義在對稱區(qū)間(?l,l)上的任何函數(shù)
解答:
f(x)都可以表示成一個偶函數(shù)與一個奇函數(shù)和的形式。
f(x)?f(x)?f(?x)f(x)?f(?x)?
22(2)證明奇函數(shù)與奇函數(shù)之和為奇函數(shù),偶函數(shù)與偶函數(shù)之和為偶函數(shù),奇函數(shù)與奇函數(shù)之積為偶函數(shù),奇函數(shù)與偶函數(shù)之積為奇函數(shù),偶函數(shù)與偶函數(shù)之積為偶函數(shù)(3)定義在實數(shù)集上的連續(xù)實函數(shù)解答:先證
f滿足
f(x?y)?f(x)?f(y),則對任意有理數(shù)x總有f(x)?f(1)?x
f(x1?x2?????xn)?f(x1)?f(x2)?????f(xn),再證對任意正整數(shù)、整數(shù)、正整數(shù)的倒
數(shù)、一切有理數(shù)均成立。(4)設(shè)
f(x)滿足條件:??,??R,有|f(?)?f(?)|?(???)2,證明對任意a,b?R和n?N1(b?a)2n,有
|f(a)?f(b)|?解答:將[a,b]n等分,運(yùn)用已知不等式和絕對值不等式可證。
f(x)?f(y)|?|x?y|,且f(0)?0,
(5)若?x,y?R,有|求證
f(x)f(y)?xy,f(x?y)?f(x)?f(y)
f(x)|?|x|,即f2(x)?x2,在已知等式的兩邊平方可得f(x)f(y)?xy,又由此
解答:由已知等式可得|式可得而
f(x?y)?f(1)?(x?y)?1?f(x)f(1)?f(y)f(1)?[f(x)?f(y)]f(1)
f(1)?1?0,可證出f(x?y)?f(x)?f(y)
f(x)定義在(??,??)上,若f(f(x))存在唯一的不動點(diǎn),證明函數(shù)f(x)也存在唯一的不動點(diǎn)。
(6)設(shè)函數(shù)
以下函數(shù)是否為初等函數(shù):
(1)
y?|x|解答:是,由于y?x2y?D(x)???1?0;(2)
y?xsinx,(x?0)解答:是,由于y?esinx?lnx;
(3)
當(dāng)x為有理數(shù)當(dāng)x為無理數(shù)解答:不是;
?1?x(4)y???1?xx?02解答:是,由于y?1?xx?0n?1;
?xlna??x2?11?(5)f(x)?lim?1?dt?????0n??nt????證明以下各題:
,(a?0,a?1)解答:是,由于f(x)?a?x?1ln(x2?1)
9
(1)設(shè)函數(shù)
f(x),g(x)在[a,b]上遞增,則函數(shù)
?(x)?max{f(x),g(x)},?(x)?min{f(x),g(x)}在[a,b]上也遞增。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無機(jī)顏料制造考核試卷
- 樂器聲音的數(shù)字化處理與優(yōu)化考核試卷
- 木樓梯的聲學(xué)性能改善措施考核試卷
- 勞動法律法規(guī)解讀考核試卷
- 固體廢物處理與環(huán)??萍紕?chuàng)新考核試卷
- 體育會展新媒體運(yùn)營與粉絲經(jīng)濟(jì)考核試卷
- 體育經(jīng)紀(jì)公司體育場館運(yùn)營與管理策略考核試卷
- 房屋改建施工合同范本
- 簡易土建勞務(wù)合同范本
- 俱樂部合同范本模板
- 中公遴選公務(wù)員筆試真題及答案
- 水產(chǎn)業(yè)園區(qū)合作協(xié)議書范文
- 異常子宮出血的課件
- 2024年禮儀風(fēng)俗傳統(tǒng)文化知識競賽-中國傳統(tǒng)節(jié)日知識競賽考試近5年真題附答案
- 編制說明-放牧家畜穿戴式傳感器
- DB34T∕ 2452-2015 旅行社小包團(tuán)服務(wù)指南
- 隊列研究評估預(yù)后標(biāo)志物的外部驗證
- 2024全國各地區(qū)英語中考真題匯編《第一期》
- 電梯應(yīng)急救援與事故處理考核試卷
- 第1章 跨境電商概述
- 《高等教育學(xué)》近年考試真題題庫(含答案)
評論
0/150
提交評論