




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
試卷第=page22頁(yè),共=sectionpages44頁(yè)第Page\*MergeFormat12頁(yè)共NUMPAGES\*MergeFormat13頁(yè)2023屆江蘇省徐州市高三上學(xué)期學(xué)業(yè)合格模擬考試數(shù)學(xué)試題一、單選題1.已知集合,則A中元素個(gè)數(shù)為(
)A.8 B.9 C.10 D.11【答案】B【分析】由列舉法即可判斷【詳解】,共有9個(gè)元素.故選:B2.復(fù)數(shù)A. B. C. D.【答案】D【分析】根據(jù)復(fù)數(shù)的四則運(yùn)算,即可化簡(jiǎn),求得答案.【詳解】由復(fù)數(shù)四則運(yùn)算規(guī)律知,故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算的法則,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.3.命題的否定是(
)A.x∈R, B.?x∈R,C.?x∈R, D.【答案】C【分析】根據(jù)全稱命題的否定為存在性命題可求解.【詳解】根據(jù)全稱命題的否定為存在性命題,可得命題“”的否定為“”.故選:C.4.已知冪函數(shù)的圖象過(guò)點(diǎn),則的值為(
)A. B. C. D.【答案】A【分析】利用已知條件求出冪函數(shù)的解析式,然后代值計(jì)算可得出的值.【詳解】設(shè),則,則,,故.故選:A.5.?dāng)?shù)據(jù)1,3,6,2,2,4,6,8的平均值是(
)A.3 B.4 C.5 D.6【答案】B【分析】根據(jù)平均數(shù)的定義進(jìn)行求解即可.【詳解】數(shù)據(jù)1,3,6,2,2,4,6,8的平均值是,故選:B6.已知,若,則實(shí)數(shù)x=(
)A.8 B.-2 C.2 D.-8【答案】D【分析】根據(jù)平面向量垂直的充要條件即可求解.【詳解】因?yàn)?,且,所以,解得:,故選:.7.函數(shù)的定義域?yàn)椋?/p>
)A. B. C. D.【答案】B【分析】利用函數(shù)解析式有意義可得出關(guān)于的不等式組,由此可解得原函數(shù)的定義域.【詳解】對(duì)于函數(shù),則有,解得且,所以函數(shù)的定義域?yàn)?,故選:B.8.已知扇形的半徑為1,圓心角為30°,則扇形的弧長(zhǎng)為(
)A.30 B. C. D.【答案】C【分析】根據(jù)弧度制與角度制互化公式,結(jié)合扇形的弧長(zhǎng)進(jìn)行求解即可.【詳解】因?yàn)?0°,所以扇形的弧長(zhǎng)為,故選:C9.已知函數(shù),則(
)A. B. C. D.【答案】B【分析】利用函數(shù)的解析式計(jì)算出、的值,即可計(jì)算出的值.【詳解】因?yàn)椋瑒t,,因此,.故選:B.10.在中,若,則(
)A. B. C. D.【答案】C【分析】由正弦定理化角為邊,然后由余弦定理計(jì)算即可得角.【詳解】∵,由正弦定理得,設(shè),則,又是三角形內(nèi)角,∴.故選:C.【點(diǎn)睛】本題考查正弦定理、余弦定理,解題是用正弦定理化角為邊.屬于基礎(chǔ)題.11.已知方程的根所在的區(qū)間為,,則n的值為(
)A.0 B.1 C.2 D.3【答案】B【分析】令函數(shù),結(jié)合零點(diǎn)存在定理及對(duì)數(shù)運(yùn)算性質(zhì)即可得出,求解即可.【詳解】令函數(shù),由,,故.故選:B12.下列說(shuō)法正確的是(
)A.若a>b,則 B.若a>b,c>d,則a-c>b-dC.若a>b,c>d,則ac>bd D.若a>b,c>d,則a+c>b+d【答案】D【分析】根據(jù)不等式的性質(zhì),結(jié)合特殊值法進(jìn)行求解即可.【詳解】A:當(dāng)時(shí),顯然不正確,因此本選項(xiàng)說(shuō)法不正確;B:當(dāng)時(shí),顯然a-c>b-d不正確,因此本選項(xiàng)說(shuō)法不正確;C:當(dāng)時(shí),顯然ac>bd不正確,因此本選項(xiàng)說(shuō)法不正確;D:根據(jù)不等式的性質(zhì)可知該選項(xiàng)說(shuō)法正確,故選:D13.若函數(shù)的圖像不過(guò)第一象限,則a,b所滿足的條件是(
)A.a(chǎn)>1,b<-1 B.0<a<1,b≤-1C.0<a<1,b<-1 D.a(chǎn)>1,b≤-1【答案】B【分析】根據(jù)指數(shù)型函數(shù)的單調(diào)性,結(jié)合指數(shù)運(yùn)算的性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時(shí),,因?yàn)榈膱D像不過(guò)第一象限,所以有,故選:B14.設(shè)p:m≤1:q:關(guān)于x的方程有兩個(gè)實(shí)數(shù)解,則p是q的(
)A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分又不必要條件【答案】B【分析】由關(guān)于x的方程有兩個(gè)實(shí)數(shù)解寫出命題q的等價(jià)命題,后判斷命題p與q的關(guān)系即可.【詳解】關(guān)于x的方程有兩個(gè)實(shí)數(shù)解,則命題q:.又p:,故p是q的必要不充分條件.故選:B15.化簡(jiǎn)的值為(
)A.0 B.1 C. D.【答案】B【分析】根據(jù)指數(shù)冪、對(duì)數(shù)的運(yùn)算公式進(jìn)行求解即可.【詳解】,故選:B16.某地區(qū)調(diào)查了2000名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根據(jù)直方圖,估計(jì)這2000名學(xué)生中每周的自習(xí)時(shí)間不低于25小時(shí)的人數(shù)是(
)A.600 B.1400 C.560 D.1200【答案】A【分析】首先根據(jù)頻率分布直方圖求出自習(xí)時(shí)間不低于25小時(shí)的頻率,即可求出人數(shù);【詳解】由頻率分布直方圖可知自習(xí)時(shí)間不低于25小時(shí)的頻率為,故這2000名學(xué)生中每周的自習(xí)時(shí)間不低于25小時(shí)的人數(shù)為(人);故選:A17.已知,則sin2α=(
)A. B. C.1 D.【答案】D【分析】根據(jù)平方法,結(jié)合二倍角的正弦公式、同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】,故選:D18.已知a,b,c,m,l表示直線,α表示平面,下列說(shuō)法正確的是(
)A.若ab,c⊥a,則c⊥b; B.若a⊥c,b⊥c,則ab;C.若ab,b?α,則aα; D.若m?α,n?α,l⊥m,l⊥n,則l⊥α.【答案】A【分析】由異面直線垂直定義判定選項(xiàng)A;由空間兩直線位置關(guān)系定義判定選項(xiàng)B;由線面平行判定定理判斷選項(xiàng)C;由線面垂直判定定理判斷選項(xiàng)D.【詳解】選項(xiàng)A:若ab,c⊥a,則c⊥b.判斷正確;選項(xiàng)B:若a⊥c,b⊥c,則a與b平行或相交或異面.判斷錯(cuò)誤;選項(xiàng)C:若ab,b?α,則aα或.判斷錯(cuò)誤;選項(xiàng)D:若m?α,n?α,l⊥m,l⊥n,則或或l與α相交.判斷錯(cuò)誤.故選:A19.若正實(shí)數(shù)x,y滿足,則x+2y的最小值為(
)A.7 B.8 C.9 D.10【答案】C【分析】利用基本不等式進(jìn)行求解即可.【詳解】因?yàn)閤,y是正數(shù),所以有,當(dāng)且僅當(dāng)時(shí)取等號(hào),即當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:C20.設(shè),則a,b,c的大小關(guān)系是(
)A.a(chǎn)<b<c B.a(chǎn)<c<b C.c<c<b D.b<a<c【答案】A【分析】利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得,,的大小關(guān)系.【詳解】因?yàn)椋忠驗(yàn)?,則,,得,而,所以,.故選:A.21.在直四棱柱中,底面是邊長(zhǎng)為2的正方形,,則二面角的大小為(
)A.30° B.45° C.60° D.90°【答案】B【分析】由直四棱柱中的性質(zhì)作出二面角的平面角,運(yùn)用三角函數(shù)即可求得角度.【詳解】如圖所示,AC,BD交于O,連接,直四棱柱中,面,則為所求二面角,,則二面角的大小為45°.故選:B22.已知一個(gè)實(shí)心銅質(zhì)的圓錐形材料的底面半徑為4,側(cè)面積為,現(xiàn)將它熔化后鑄成一個(gè)實(shí)心銅球,不計(jì)損耗,則銅球的半徑為(
)A.2 B. C. D.【答案】A【分析】利用圓錐的體積公式和球的體積公式即可求得半徑.【詳解】由已知圓錐底面半徑為4,所以底面周長(zhǎng)為,圓錐的母線長(zhǎng)為:,所以圓錐的高,所以圓錐的體積為:,設(shè)球的半徑為,所以,解得.故選:A23.要得到函數(shù)的圖像,只需將的圖像上所有的點(diǎn)(
)A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度【答案】C【分析】將變形為,進(jìn)而結(jié)合左右平移變換的特征即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖像上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度即可,故選:C.24.如圖,在邊長(zhǎng)為3的正中,D,E分別在AC,AB上,且,則(
)A. B. C. D.【答案】C【分析】結(jié)合平面向量的線性運(yùn)算得到,進(jìn)而根據(jù)平面向量的數(shù)量積的定義即可求出結(jié)果.【詳解】因?yàn)?,所以又因?yàn)檎呴L(zhǎng)為3,所以,,故故選:C.25.設(shè)為實(shí)數(shù),定義在上的偶函數(shù)滿足:①在上為增函數(shù);②,則實(shí)數(shù)的取值范圍為(
)A. B.C. D.【答案】B【分析】利用函數(shù)的奇偶性及單調(diào)性可得,進(jìn)而即得.【詳解】因?yàn)闉槎x在上的偶函數(shù),在上為增函數(shù),由可得,∴,解得.故選:B.26.已知,則的值為(
)A. B. C. D.【答案】C【分析】利用兩角差的正弦公式即可求得的值【詳解】由,可得由,可得,又,則則故選:C27.已知是定義在上的偶函數(shù),當(dāng)時(shí),,則方程的根的個(gè)數(shù)為(
)A.1 B.2 C.4 D.6【答案】B【分析】根據(jù)偶函數(shù)的性質(zhì),結(jié)合對(duì)數(shù)和指數(shù)運(yùn)算性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,或,當(dāng)時(shí),不滿足;當(dāng)時(shí),顯然方程無(wú)實(shí)根,所以當(dāng)時(shí),有一個(gè)實(shí)數(shù)解,因?yàn)槭嵌x在上的偶函數(shù),所以函數(shù)的圖象關(guān)于縱軸,因此當(dāng)時(shí),也有一個(gè)實(shí)數(shù)解,所以的根的個(gè)數(shù)為2,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用偶函數(shù)的性質(zhì)是解題的關(guān)鍵.28.在銳角三角形中,點(diǎn)為延長(zhǎng)線上一點(diǎn),且,則三角形的面積為(
)A. B.C. D.【答案】C【分析】在△ABC中,利用余弦定理求解BC,根據(jù)已知銳角三角形條件排除不符合條件的解,再利用三角形面積公式求得結(jié)果.【詳解】設(shè)則.在△ABC中,由余弦定理,得,即,解得.當(dāng)時(shí),,,是一個(gè)鈍角,不合題意,舍去.當(dāng)時(shí),,,所以,又,則,符合題意.在△中,,則△的面積.故選:C.二、解答題29.在三棱柱中,AB⊥AC,平面ABC,E?F分別是棱中點(diǎn).(1)求證:EF平面;(2)求證:平面.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)由線線平行證線面平行即可;(2)先由線線垂直證平面,再由即可證.【詳解】(1)證明:由E?F分別是棱中點(diǎn)得,又平面,平面,故EF平面(2)證明:由平面ABC,平面ABC,∴,又AB⊥AC,平面,故平面,由得平面.30.已知定義在上的奇函數(shù)f(x)滿足:時(shí),.(1)求的表達(dá)式;(2)若關(guān)于的不等式恒成立,求的取值范圍.【答案】(1)(2)【分析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫(yī)2023練習(xí)卷含答案(一)
- 社區(qū)特色小吃文化與旅游產(chǎn)業(yè)融合發(fā)展報(bào)告
- 科技類博物館的展覽及教育活動(dòng)組織研究
- 螢石尾礦銷售合同范本
- 修補(bǔ)瓷磚合同范本
- 2025-2030年中國(guó)電子廢棄物行業(yè)十三五規(guī)劃及投資戰(zhàn)略研究報(bào)告
- 舞廳出租轉(zhuǎn)讓合同范本
- 鐵藝門窗合同范本
- 廠房清理回收合同范本
- 2025-2030年中國(guó)滾塑工藝行業(yè)運(yùn)行狀況及前景趨勢(shì)分析報(bào)告
- 《PLC應(yīng)用技術(shù)(西門子S7-1200)第二版》全套教學(xué)課件
- 智能建造施工技術(shù) 課件 項(xiàng)目1 智能建造施工概論
- 單詞連連看答題闖關(guān)游戲課堂互動(dòng)課件1
- 物理學(xué)家伽利略課件
- 《WPS辦公應(yīng)用職業(yè)技能等級(jí)》課件-1. WPS初級(jí)-文字
- 2024小學(xué)數(shù)學(xué)義務(wù)教育新課程標(biāo)準(zhǔn)(2022版)必考題庫(kù)附含答案
- 北師大版二年級(jí)數(shù)學(xué)下冊(cè)教材分析
- 《儒林外史》專題復(fù)習(xí)課件(共70張課件)
- 2024年春九年級(jí)化學(xué)下冊(cè) 第九單元 溶液教案 (新版)新人教版
- 《混合動(dòng)力汽車用變速器效率臺(tái)架試驗(yàn)方法》
- 羽毛球比賽對(duì)陣表模板
評(píng)論
0/150
提交評(píng)論