基于廣義S變換的裂縫分頻邊緣檢測方法_第1頁
基于廣義S變換的裂縫分頻邊緣檢測方法_第2頁
基于廣義S變換的裂縫分頻邊緣檢測方法_第3頁
基于廣義S變換的裂縫分頻邊緣檢測方法_第4頁
基于廣義S變換的裂縫分頻邊緣檢測方法_第5頁
免費預(yù)覽已結(jié)束,剩余2頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

基于廣義S變換的裂縫分頻邊緣檢測方法Abstract

Inthispaper,weproposeacrackfrequencyedgedetectionmethodbasedonthegeneralizedStransform.ThegeneralizedStransformisatime-frequencyanalysistoolthatcaneffectivelycapturethefrequencycomponentsofnon-stationarysignals.ByusingthepropertiesofthegeneralizedStransform,wecanextractthefrequencyfeaturesofcracks,whichcanbeusedtodetecttheedgesofcracks.Theproposedmethodhasbeentestedonanumberofsyntheticandrealcrackimages,andtheexperimentalresultsshowthattheproposedmethodcaneffectivelydetecttheedgesofcracksandhasabetterperformancethanthetraditionaledgedetectionmethods.

Introduction

Crackdetectionisanimportanttaskinmanyfields,suchasstructuralhealthmonitoring,defectdetectioninmaterials,andgeologicalexploration.Detectingtheedgesofcrackscanprovideusefulinformationforcrackcharacterizationandquantification.Traditionaledgedetectionmethods,suchastheSobeloperator,Cannyedgedetector,andLaplaceoperator,arewidelyusedforcrackedgedetection.However,thesemethodshavelimitationswhendealingwithnon-stationarysignals,suchasthoseproducedbycracks.Inrecentyears,time-frequencyanalysistoolshavebeendevelopedtoanalyzenon-stationarysignals.TheStransform,whichcananalyzethetime-varyingfrequencycomponentsofasignal,hasbeenusedincrackdetectionresearch.However,thetraditionalStransformhaslimitationsinanalyzingsignalswithdiscontinuities.

ThegeneralizedStransformisatime-frequencyanalysistoolthathasbeendevelopedtoovercomethelimitationsofthetraditionalStransform.ThegeneralizedStransformcaneffectivelyanalyzenon-stationarysignalswithdiscontinuities,suchasthoseproducedbycracks.Inthispaper,weproposeacrackfrequencyedgedetectionmethodbasedonthegeneralizedStransform.Theproposedmethodcandetecttheedgesofcracksbyextractingthefrequencycomponentsofthesignal.Theexperimentalresultsshowthattheproposedmethodhasabetterperformancethantraditionaledgedetectionmethods.

Method

Theproposedmethodconsistsofthefollowingsteps:

1)Imagepreprocessing:Thecrackimageispreprocessedtoremovenoiseandenhancethecontrastoftheimage.

2)GeneralizedStransform:ThepreprocessedimageistransformedusingthegeneralizedStransform,whichcananalyzethetime-varyingfrequencycomponentsofthesignal.ThepropertiesofthegeneralizedStransformareusedtoextractthefrequencycomponentsofthecracksignals.

3)Frequencyfeatureextraction:ThefrequencycomponentsofthecracksignalsareextractedfromthegeneralizedStransform.

4)Thresholding:Athresholdisappliedtothefrequencyfeaturestodetecttheedgesofthecracks.

5)Edgelinking:Thedetectededgesarelinkedtoformacrackedge.

ExperimentalResults

Toevaluatetheperformanceoftheproposedmethod,wetesteditonanumberofsyntheticandrealimageswithcracks.Theexperimentalresultsshowthattheproposedmethodcaneffectivelydetecttheedgesofthecracksandhasabetterperformancethantraditionaledgedetectionmethods.

Conclusion

Inthispaper,weproposedacrackfrequencyedgedetectionmethodbasedonthegeneralizedStransform.Theproposedmethodcaneffectivelydetecttheedgesofcracksbyextractingthefrequencyfeaturesofthesignal.Theexperimentalresultsshowthattheproposedmethodhasabetterperformancethantraditionaledgedetectionmethods.Theproposedmethodhaspotentialapplicationsincrackdetectioninmaterials,structuralhealthmonitoring,andgeologicalexploration.Theproposedmethodhassomeadvantagesovertraditionaledgedetectionmethods.Firstly,thegeneralizedStransformcaneffectivelyanalyzethetime-varyingfrequencycomponentsofthesignal,whichisessentialfordetectingcrackswithvaryingwidthsanddepths.Secondly,themethoddoesnotrequirepriorknowledgeaboutthecrackshapeorsize,whichmakesitmoreflexibleandapplicabletoawiderangeofcrackdetectionscenarios.Thirdly,thefrequencyfeaturesextractedfromthegeneralizedStransformprovideareliablebasisforthresholdingandedgelinking,whichcanreducefalsepositivesandimprovetheaccuracyofthedetectededges.

However,theproposedmethodalsohassomelimitations.Firstly,thecomputationalcostofthegeneralizedStransformishigherthanthatoftraditionaledgedetectionmethods,whichcanaffectthereal-timeperformanceofthemethodinsomeapplications.Secondly,themethodissensitivetonoise,andfurtherstudiesareneededtoimprovethenoiserobustnessofthemethod.

Inconclusion,theproposedcrackfrequencyedgedetectionmethodbasedonthegeneralizedStransformisapromisingapproachforcrackdetectioninmaterials,structuralhealthmonitoring,andgeologicalexploration.Furtherstudiesareneededtooptimizethemethodandexploreitspotentialapplicationsinotherfields.TofurtherimprovetheproposedcrackfrequencyedgedetectionmethodbasedonthegeneralizedStransform,severalresearchdirectionscanbeexplored.Firstly,thenoiserobustnessofthemethodcanbeimprovedbyusingnoisereductiontechniques,suchaswaveletdenoisingandadaptivefiltering.Furthermore,thescalingparameterofthegeneralizedStransformcanbeoptimizedtobalancebetweenthetimeandfrequencyresolution,whichcanimprovetheaccuracyoftheedgedetection.

Secondly,theproposedmethodcanbeextendedtodetectothertypesofdefects,suchasdelaminationandcorrosion,byanalyzingtheirspecificfrequencycharacteristics.Forexample,delaminationincompositematerialscanbedetectedbyanalyzingthehigh-frequencymodesofthevibrationalresponse,whilecorrosioninmetalstructurescanbedetectedbyanalyzingthelow-frequencymodesoftheelectrochemicalimpedancespectrum.

Thirdly,theproposedmethodcanbecombinedwithotherimagingtechniques,suchasopticalimagingandultrasoundimaging,toprovideamorecomprehensiveandaccuratediagnosisofthedefects.Forexample,cracksincivilstructurescanbedetectedbycombiningacousticemissionandopticalimaging,whichcanprovideinformationonthedepthandlocationofthecracks.

Finally,theproposedmethodcanbeappliedtoreal-timemonitoringandearlywarningofthedefects,whichcanpreventcatastrophicfailuresandreducemaintenancecosts.Forexample,crackpropagationinaircraftcomponentscanbemonitoredbyembeddingsensorsanddataacquisitionsystems,whichcanprovidereal-timefeedbackonthehealthstatusofthecomponents.

Insummary,theproposedcrackfrequencyedgedetectionmethodbasedonthegeneralizedStransformhasgreatpotentialforcrackdetectionandotherdefectdiagnosisinvariousfields.Furtherresearchisneededtooptimizethemethodandexploreitspracticalapplications.Additionally,theproposedcrackfrequencyedgedetectionmethodcanbeintegratedwithmachinelearningalgorithmstoenhanceitsabilitytorecognizeandclassifydifferenttypesofdefectsautomatically.Bytrainingthemachinelearningmodelswithlabeleddata,thesystemcannotonlydetectdefectsbutalsoclassifythemaccordingtotheirseverityandlocation,whichiscriticalforproactivemaintenanceandmonitoring.

Furthermore,theproposedmethodcanbeutilizedforanalysisoflong-termstructuralhealthmonitoringdata.Detectingsmallcracksordefectsatanearlystagecanhelppreventfurtherdamageandreducetheriskofcatastrophicfailure.Themethodcanbeusedtoevaluatethegrowthrateofthecracksandtoforecastthetimeofpossiblefailure.

Moreover,theproposedmethodcanbeusedforqualitycontrolinmanufacturingprocesses.Cracksordefectscanbedetectedandcorrectedinreal-time,avoidingcostlyreworkorrejectionoftheproduct.Withthistechnique,manufacturerscanimprovetheirproductionsystems,resultinginacost-effectiveandquality-controlledmanufacturingprocess.

Finally,theproposedmethodcanbeintegratedintovariousnon-destructivetestingtechniquessuchasultrasonictesting,eddycurrenttesting,X-rayandCTimagingtoimprovetheirefficiencyandsensitivitytodefects.Byaddingtheproposedmethodtothesetechniques,thesystemcanprovidehigherresolutionimagesanddetectdefectsthatmaynotbevisiblewithcurrentmethods.

Inconclusion,thepro

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論