![2023屆吉林省松原市油田第十一中學(xué)高考數(shù)學(xué)二模試卷含解析_第1頁](http://file4.renrendoc.com/view/4637caa6b1ee9b49b781ed8970d2bdda/4637caa6b1ee9b49b781ed8970d2bdda1.gif)
![2023屆吉林省松原市油田第十一中學(xué)高考數(shù)學(xué)二模試卷含解析_第2頁](http://file4.renrendoc.com/view/4637caa6b1ee9b49b781ed8970d2bdda/4637caa6b1ee9b49b781ed8970d2bdda2.gif)
![2023屆吉林省松原市油田第十一中學(xué)高考數(shù)學(xué)二模試卷含解析_第3頁](http://file4.renrendoc.com/view/4637caa6b1ee9b49b781ed8970d2bdda/4637caa6b1ee9b49b781ed8970d2bdda3.gif)
![2023屆吉林省松原市油田第十一中學(xué)高考數(shù)學(xué)二模試卷含解析_第4頁](http://file4.renrendoc.com/view/4637caa6b1ee9b49b781ed8970d2bdda/4637caa6b1ee9b49b781ed8970d2bdda4.gif)
![2023屆吉林省松原市油田第十一中學(xué)高考數(shù)學(xué)二模試卷含解析_第5頁](http://file4.renrendoc.com/view/4637caa6b1ee9b49b781ed8970d2bdda/4637caa6b1ee9b49b781ed8970d2bdda5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個(gè)陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.2.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線AD與平面BCD所成角為時(shí),直線AC與平面ABD所成角的正弦值為()A. B. C. D.3.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.4.函數(shù)在的圖象大致為A. B.C. D.5.已知三棱錐且平面,其外接球體積為()A. B. C. D.6.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.7.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.8.已知函數(shù),則()A. B. C. D.9.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?10.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無關(guān)”D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”11.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽爻的概率是()A. B. C. D.12.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.14.已知數(shù)列為正項(xiàng)等比數(shù)列,,則的最小值為________.15.若變量,滿足約束條件,則的最大值為__________.16.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個(gè)人做進(jìn)一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面四邊形中,,是上的一點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.18.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.19.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).20.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設(shè),,求證:.21.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請(qǐng)說明理由.22.(10分)如圖,三棱柱中,平面,,,分別為,的中點(diǎn).(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.2、A【解析】
設(shè)E為BD中點(diǎn),連接AE、CE,過A作于點(diǎn)O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線AC與平面ABD所成角,進(jìn)而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點(diǎn),連接AE、CE,由題可知,,所以平面,過A作于點(diǎn)O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點(diǎn)O與點(diǎn)C重合,此時(shí)有平面,過C作與點(diǎn)F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點(diǎn)睛】該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識(shí)點(diǎn)有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.3、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】
因?yàn)椋耘懦鼵、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.5、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進(jìn)而求解.【詳解】由題,因?yàn)?所以,設(shè),則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設(shè)外接球的半徑為,則,所以,所以外接球的體積.故選:A【點(diǎn)睛】本題考查三棱錐的外接球體積,考查空間想象能力.6、D【解析】
以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.8、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.9、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.10、B【解析】
通過與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,屬于基礎(chǔ)題.11、C【解析】
利用組合的方法求所求的事件的對(duì)立事件,即該重卦沒有陽爻或只有1個(gè)陽爻的概率,再根據(jù)兩對(duì)立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽爻”的對(duì)立事件是“該重卦沒有陽爻或只有1個(gè)陽爻”,其中,沒有陽爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽爻的情況有種,故,所以該重卦至少有2個(gè)陽爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對(duì)立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.12、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)椋士傻没?,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)二項(xiàng)展開式的通項(xiàng)公式即可得結(jié)果.【詳解】解:(2x-1)7的展開式通式為:當(dāng)時(shí),,則.故答案為:【點(diǎn)睛】本題考查求二項(xiàng)展開式指定項(xiàng)的系數(shù),是基礎(chǔ)題.14、27【解析】
利用等比數(shù)列的性質(zhì)求得,結(jié)合其下標(biāo)和性質(zhì)和均值不等式即可容易求得.【詳解】由等比數(shù)列的性質(zhì)可知,則,.當(dāng)且僅當(dāng)時(shí)取得最小值.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì),涉及均值不等式求和的最小值,屬綜合基礎(chǔ)題.15、【解析】
根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時(shí),取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時(shí),直線在軸截距最大;由直線平移可知,當(dāng)過時(shí),在軸截距最大,由得:,.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.16、32【解析】
由已知可得抽取的比例,計(jì)算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點(diǎn)睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點(diǎn),所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點(diǎn)在平面的投影恰好為的中點(diǎn),所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因?yàn)?所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點(diǎn),所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點(diǎn),方向?yàn)檩S方向,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點(diǎn)睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題.18、(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.【解析】
(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).設(shè)點(diǎn),,,,將直線的方程代入,化簡,利用韋達(dá)定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.理由如下:設(shè)點(diǎn),,將直線的方程代入,并整理,得.(*)則,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O,所以,即.又,于是,解得,經(jīng)檢驗(yàn)知:此時(shí)(*)式的,符合題意.所以當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O【點(diǎn)睛】本題考查橢圓方程的求法,橢圓的簡單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.19、【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因?yàn)椋?,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.20、(1).(2)見解析【解析】
(1)由絕對(duì)值三解不等式可得,所以當(dāng)時(shí),,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當(dāng)時(shí),,解得.(2)∵,∴,∴,當(dāng)且僅當(dāng),即,時(shí),等號(hào)成立.∴.【點(diǎn)睛】本題主要考查絕對(duì)值三角不等式及基本不等式的簡單應(yīng)用,屬于中檔題.21、(1)見解析;(2)存在,長【解析】
(1)先證面,又因?yàn)槊?所以平面平面.(2)根據(jù)題意建立空間直角坐標(biāo)系.列出各點(diǎn)的坐標(biāo)表示,設(shè),則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因?yàn)樗倪呅螢榫匦?∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系.如圖所示:則,,,,,設(shè),;∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年表面改性材料合作協(xié)議書
- 2025年智能食品營養(yǎng)秤合作協(xié)議書
- 八年級(jí)英語下冊(cè) Unit 6 單元綜合測(cè)試卷(人教版 2025年春)
- SPM93-MODBUS串行通信協(xié)議-V1.0
- 2025年產(chǎn)權(quán)委托交易協(xié)議標(biāo)準(zhǔn)范文(2篇)
- 2025年二年級(jí)數(shù)學(xué)教學(xué)工作總結(jié)第一學(xué)期模版(二篇)
- 2025年個(gè)人無息的借款合同(三篇)
- 2025年個(gè)人房屋租房合同協(xié)議(三篇)
- 2025年個(gè)人車抵押借款合同常用版(2篇)
- 2025年五年級(jí)丑小鴨閱讀心得樣本(2篇)
- 青島版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)《分?jǐn)?shù)的初步認(rèn)識(shí)》教學(xué)案例
- 2024PowerTitan系列運(yùn)維指導(dǎo)儲(chǔ)能系統(tǒng)運(yùn)維指導(dǎo)
- 沸石轉(zhuǎn)輪知識(shí)講解
- 固定資產(chǎn)盤點(diǎn)報(bào)告醫(yī)院版
- 中國內(nèi)部審計(jì)準(zhǔn)則及指南
- 銀行個(gè)人業(yè)務(wù)培訓(xùn)課件
- 2024年ISTQB認(rèn)證筆試歷年真題薈萃含答案
- tpu顆粒生產(chǎn)工藝
- 《體檢中心培訓(xùn)》課件
- 腫瘤患者全程管理
- 初中數(shù)學(xué)深度學(xué)習(xí)與核心素養(yǎng)探討
評(píng)論
0/150
提交評(píng)論