ADI - 使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用_第1頁
ADI - 使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用_第2頁
ADI - 使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用_第3頁
ADI - 使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用_第4頁
ADI - 使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

精品文檔-下載后可編輯ADI-使用LTspice進行工程電源和MEMS信號鏈模擬-設計應用摘要

本文為設計人員提供了使用LTspice模擬工程電源解決方案的背景和指導。對工程電源解決方案實施優(yōu)化后,可使用LTspice研究完整的MEMS信號鏈。有些傳感器具有數(shù)字輸出,有些傳感器則包含模擬輸出。對于包含模擬輸出的傳感器,可使用LTspice以及運算放大器、模數(shù)轉(zhuǎn)換器(ADC)甚至可用的MEMS頻率響應模型,模擬整個信號鏈。

多快好省

針對同一線路上共享電源和數(shù)據(jù),目前有多種標準,包括針對數(shù)據(jù)線供電(PoDL)的IEEE802.3bu,以及針對以太網(wǎng)供電(PoE)的IEEE802.3af,采用帶有專用電源接口控制器。這些定義的標準通過檢測、連接檢查、分類和開/關(guān)故障監(jiān)測,提供了受控的安全電源連接。在安全供電情況下,功率水平范圍為幾瓦至幾十瓦。與適用于廣泛應用的標準化PoE/PoDL規(guī)范相反,術(shù)語“工程電源(EP)”是指定制的數(shù)據(jù)線供電設計,通常用于單個應用。例如,針對電機控制編碼器應用,HiperfaceDSL規(guī)范1將電源和數(shù)據(jù)耦合至同一線路。工程電源還可用于一些現(xiàn)代傳感器系統(tǒng)中。

一般的共享電源和數(shù)據(jù)接口經(jīng)過編碼,可減少信號直流成分,從而在發(fā)送交流信號成分時簡化系統(tǒng)設計。但是,許多數(shù)字輸出傳感器接口(例如,SPI和I2C)尚未經(jīng)過編碼,具有可變的信號直流成分,因此不是共享數(shù)據(jù)和電源設計的自然之選。對SPI或I2C進行編碼需要額外的微控制器,這會增加解決方案的成本和尺寸,如圖1所示。為了免去編碼和額外增加微控制器的麻煩,設計人員必須嘗試采用多快好省的辦法,這就需要仔細設計和模擬工程電源電路。工程電源電路由電感、電容和保護電路組成,一起構(gòu)成了一個濾波器。

圖1.MEMS傳感器的潛在工程電源解決方案,在傳感器解決方案尺寸和設計復雜性方面進行了權(quán)衡

工程電源背景

功率和數(shù)據(jù)通過電感電容網(wǎng)絡分布在一對電線上。高頻數(shù)據(jù)通過串聯(lián)電容與數(shù)據(jù)線路耦合,同時保護通信收發(fā)器免受直流母線電壓影響。主控制器上的電源通過電感器連接到數(shù)據(jù)線路,然后使用電纜遠端的子節(jié)點傳感器節(jié)點上的電感器進行濾波。

電感電容網(wǎng)絡將產(chǎn)生高通濾波器,因此耦合解決方案必須添加到不需要直流數(shù)據(jù)成分的數(shù)據(jù)線上。但是,有些接口未在物理層進行編碼以去除直流成分,例如,SPI。在這種情況下,系統(tǒng)設計人員需考慮很壞情況的直流成分場景,即數(shù)據(jù)幀中發(fā)送的所有位均為邏輯高電平(100%直流成分)。所選的電感還將具有指定的自諧振頻率(SRF),超過該頻率時,電感值會下降,寄生電容會增加。這樣,工程電源電路將同時充當?shù)屯ê透咄V波器(帶通)?;谀M的建模可大大幫助系統(tǒng)設計人員了解該限制。

長距離移植SPI時,電纜和元件會影響系統(tǒng)時鐘和數(shù)據(jù)同步??赡艿暮艽骃PI時鐘基于系統(tǒng)傳輸延遲設置,包括電纜傳輸延遲,以及主節(jié)點和子節(jié)點元件傳輸延遲。雖然本文未作進一步討論,但設計人員應意識到該額外限制,更多信息請參考文章“為工業(yè)4.0啟用可靠的基于狀態(tài)的有線監(jiān)控——第2部分”。2

圖2所示為簡化的工程電源電路,可用于進行濾波或下降電壓和下降時間分析。受數(shù)據(jù)線供電網(wǎng)絡電感的影響,通信總線電壓會下降,如圖3所示。電壓下降分析很重要,因為當電壓下降超過峰值電壓的99%時,網(wǎng)絡中會出現(xiàn)位錯誤??蓪⑾到y(tǒng)設計為符合特定的電壓下降和時間下降規(guī)范。例如,1000BASE-T以太網(wǎng)假設500ns內(nèi)的電壓下降為27%,3如圖3所示。

圖2.工程電源,用于分析的簡化電路

圖3.電壓下降和下降時間

等式1至等式6提供電感值和電容值,以獲得目標電壓下降值和下降時間。假設在電壓下降期間,隔直電容間的電壓變化可忽略不計,則得出以下表達式,以求取串聯(lián)LR電路的電壓下降值:

基于目標下降、下降時間和電阻,該等式提供了求取電感的表達式:4

通過以下等式求出串聯(lián)RLC電路的阻尼比:

假設臨界阻尼系統(tǒng)的ζ=1,則給出了用于求取C的表達式:

代入上述求C和L的表達式,得出電路高通濾波器的截止頻率:

對于臨界阻尼系統(tǒng):為什么使用LTspice來進行工程電源模擬?

使用LTspice進行工程電源模擬有幾個令人信服的原因,包括:

u真實電感模型,包括可使模擬與真實性能更緊密相關(guān)的器件寄生效應。LTspice庫中具有數(shù)以千計的電感模型,由眾多制造商(W?rth、Murata、Coilcraft和Bourns)提供。

u提供適用于ADI物理層通信收發(fā)器的LTspice模型以支持多種接口標準(CAN、RS-485),而其他半導體制造商通常不提供。

u靈活的LTspice波形查看器可用于對數(shù)據(jù)線供電設計進行快速的數(shù)值評估。

u與普通SPICE模擬器相比,借助LTspice的增強功能,模擬功耗器件(例如,LDO穩(wěn)壓器和開關(guān)穩(wěn)壓器)的速度非??欤脩魞H需幾分鐘即可查看大部分開關(guān)穩(wěn)壓器的波形。

u現(xiàn)成LTspice演示電路減少了原理圖采集時間。

u有1000多種ADI功率器件模型、200多種運算放大器模型和ADC模型以及電阻、電容、晶體管和MOSFET模型,可供您用于完成剩余的設計部分。

使用LTspice進行下降分析

圖4提供了簡化的數(shù)據(jù)線供電模擬電路。該電路使用LTC2862RS-485收發(fā)器LTspice宏模型和1mH電感(W?rth74477830)。LTspice中的真實電感模型包括可使模擬與真實設計性能更緊密相關(guān)的器件寄生效應。隔直電容值為10F。一般來說,使用較大的電感值和電容值可降低通信網(wǎng)絡上的數(shù)據(jù)速率性能。模擬測試用例的數(shù)據(jù)速率為250kHz,這大致相當于通過RS-485接口移植時鐘同步SPI時100米的電纜通信2。模擬中使用的輸入電壓波形對應于很差情況的直流成分,其中包含16位字和所有邏輯高電平位。模擬結(jié)果如圖5和圖6所示。輸入電壓波形(VIN)與遠程受電器件的輸出相匹配(無通信錯誤)。圖6所示為用于進行下降分析的總線電壓差分波形(電壓A到電壓B)的放大圖。從L2電感中提取的遠程傳感器節(jié)點電壓提供5V1mV的電源軌。

圖4.使用LTC2862(RS-485)和1mHWrth電感74477830的工程電源LTspice模擬電路

圖5.RS-485總線差分電壓V(A,B)以及下降點X和Y的模擬結(jié)果

圖6.點X和Y的下降分析

使用圖5和圖6的LTspice波形測量VDROOP、VPEAK和TDROOP。然后,使用等式2和等式4計算L值和C值。如表1所示,計算出的L值為1mH至3mH,但該值可能因測量波形的位置而有所不同。在X點進行的測量很準確,產(chǎn)生了約為1mH的正確電感值。高通濾波器頻率(等式6)就是下降時間和電壓的函數(shù),對于點X,1位(半個時鐘周期)的頻率約等于250kHz/32,與圖5所示的輸入波形(V3)相匹配。

運行圖4所示的模擬時,值得注意的是,建議使用C8電容來降低傳感器上的電壓過沖(功率提取節(jié)點上的VPOUT)。添加C8以后,過沖很大值為47mV,并且在1.6ms內(nèi)建立至所需5VDC的1mV以內(nèi)。在不使用C8電容的情況下進行模擬導致系統(tǒng)欠阻尼,過沖值為600mV,并且與5VDC目標存在100mV的yong久電壓振蕩。

C值為0.4μF至1μF,如表1所示。C值小于10F隔直電容值,因為電路包含額外的串聯(lián)電容(1F、100F),且可能出現(xiàn)過阻尼,這與等式1至等式6的計算相矛盾。

下降分析:使用VDROOP/VPEAK和TDROOP測定電路電感和電容

模擬點

LTspice波形實測值

使用等式1至等式6得出的計算值

VDROOP(V)

VPEAK(V)

VDROOP/

PEAK

TDROOP

(s)

R(Ω)

L(mH)

C(F)

X

2.85

6.06

0.47

7.54

107

1.1

0.4

Y

5.14

6.06

0.85

63.6

107

3.6

1.2

使用LTspice模擬更復雜的供電電路

在傳感器節(jié)點添加LDO穩(wěn)壓器或DC-DC轉(zhuǎn)換器可實現(xiàn)在標準工業(yè)電壓軌(例如,12VDC和24VDC)上從主節(jié)點供電。LDO穩(wěn)壓器或DC-DC開關(guān)穩(wěn)壓器的選擇取決于應用要求。如果應用使用12VDC電壓軌,則LDO穩(wěn)壓器可能適合用來實現(xiàn)超低噪聲性能,并且在傳感器子節(jié)點產(chǎn)生可接受的功耗。對于24VDC電壓軌,建議使用效率更高的DC-DC開關(guān)穩(wěn)壓器來降低功耗。ADI的低噪聲SilentSwitche架構(gòu)確??蓪崿F(xiàn)更高的能效和低噪聲。

24VDC廣泛用于鐵路、工業(yè)自動化、航空航天和防務應用中。適用于鐵路用電子裝置的EN50155標準5規(guī)定了24VDC的標稱輸入電壓,但標稱輸入變化為0.7VIN至1.25VIN,規(guī)定的擴展范圍為0.6?VIN至1.4?VIN。因此,應用中使用的DC-DC器件需要14.4VDC至33.6VDC的較寬輸入范圍。

LTM8002SilentSwitcher?Module?穩(wěn)壓器采用6.25mm?6.25mmBGA封裝和3.4VDC至40VDC的較寬輸入范圍,非常適用于鐵路車輛監(jiān)控中所用的空間受限振動傳感器。

圖7復制了圖4的原理圖,增加了LTM8002,從主節(jié)點輸送至子節(jié)點傳感器的電源為24VDC。模擬顯示在LTM8002上達到所需5VDC?1%的輸出電壓需要1ms的斜坡時間。建議設計人員在上電時實施2ms至3ms時間延遲,然后再啟動主節(jié)點和子節(jié)點之間的通信。這將確保在傳感器節(jié)點輸出端獲得有效數(shù)據(jù)。

圖7.在傳感器子節(jié)點(LTM8002)使用ADI的低噪聲SilentSwitcher器件可為電源軌設計提供更大的靈活性

圖8.在VPOUT上達到所需5VDC的斜坡時間為1ms,2ms至3ms后在VOUT上獲得有效數(shù)據(jù)

完整的MEMS信號鏈模擬

ADI公司提供很多設計筆記,可幫助設計人員完成MEMS信號鏈設計,并使用LTspice進行模擬(參見圖9)。雖然很多MEMS均為數(shù)字輸出,但也有很多高性能傳感器具有模擬輸出。模擬運算放大器和ADC信號鏈可在完成硬件設計構(gòu)建之前提供有價值的見解。

如要分析低通濾波、放大器和ADC輸入對傳感器數(shù)據(jù)的影響,設計人員可參考GabinoAlonso和KrisLokere提供的LTspice基準電路。6可提供AD4002和AD400318位SARADC以及16位LTC2311-16的模擬模型。關(guān)于使用LTspice開發(fā)定制的模數(shù)轉(zhuǎn)換器模型,ErickCook提供了有用的實踐指南。7

有200多種運算放大器模型可供選擇,包括ADA4807和ADA4805系列??商峁┗鶞孰妷汉昴P停ɡ?,ADR4525和LTC6655-5),以及ADA4807-1基準電壓緩沖器。

SimonBramble在他的一篇關(guān)于狀態(tài)監(jiān)控系統(tǒng)的文章中介紹了如何使用LTspice來分析振動數(shù)據(jù)的頻譜。8Simon的文章提供了關(guān)于格式化和分析捕獲的傳感器數(shù)據(jù)的有用提示。

圖10所示為ADXL1002低噪聲、50gMEMS加速度計頻率響應的LTspice模型示例。以LTspice拉普拉斯格式使用串聯(lián)LRC電路與MEMS頻率響應很接近。模擬模型與數(shù)據(jù)表典型性能保持較好的一致性,諧振頻率為21kHz,在11kHz時為3dB。對于交流分析,很好在LTspice中使用Laplace電路,但對于瞬態(tài)分析,應使用分立式RLC器件以獲得很佳模擬性能。

圖9.使用LTspice的完整傳感器信號鏈模擬(簡圖—未顯示所有連接和無源器件)

圖10.(a)MEMS頻率響應的Laplace模型,(b)圖顯示諧振頻率為21kHz,在11kHz時為3dB。

對于模擬輸出加速度計(例如,ADXL1002),帶寬的定義為對直流(或低頻)加速度的響應降至–3dB時的信號頻率。圖11復制了圖10的MEMS頻率響應模型,但還包括運算放大器的濾波器電路。使用該濾波器電路,可在3dB內(nèi)測量更多的MEMS頻率響應。該圖顯示,在17kHz時運算放大器的VOUT為3dB,而未濾波MEMS的輸出在11kHz時為3dB。

圖12包括MEMS輸入模型(圖10中的分立式RLC)、運算放大器濾波和16位LTC2311-16SARADC模型??墒褂媚K化方法構(gòu)建和模擬完整的信號鏈,將有線接口和工程電源作為獨立的模塊添加。

對于瞬態(tài)模擬,可探測LTC2311-16DIGITAL_OUT節(jié)點,以查看對應于MEMS電壓輸入(VIN)的數(shù)字輸出??尚薷腖TC2311-16LTspice模型,以減少串行時鐘和CNV接口時序,并且可將數(shù)字輸出基準OVDD更改為1.71V至2.5V范圍內(nèi)的任何值。一些RS-485收發(fā)器(例如,LTC2865)包括一個邏輯接口引腳VL,該引腳可在1.8V或2.5V下運行,從而為ADC數(shù)字輸出數(shù)據(jù)的有線流傳輸提供完美匹配。然后可使用LTC2865VCC引腳,在3.3V或5.0V下單獨為RS-485接口供電,以提供電壓更高的電纜驅(qū)動。

圖11.(a)MEMS頻率響應和濾波器模型,以及(b)推高至17kHz的3dB點(與11kHz下的圖10b相比)

圖12.MEMS輸入模型(圖10中的分立式RLC)、運算放大器濾波和16位LTC2311-16SARADC模型

圖13.MEMS模型的輸入電壓(VIN)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論