下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
寫在最前面:本文是我閱讀了多篇相關(guān)文章后對(duì)它們進(jìn)行分析重組整合而得,內(nèi)容非我所原創(chuàng)。在此向多位原創(chuàng)作者致敬!??!傅立葉變換的物理意義傅立葉變換是數(shù)字信號(hào)處理領(lǐng)域一種很重要的算法。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續(xù)測(cè)量的時(shí)序或信號(hào),都可以表示為不同頻率的正弦波信號(hào)的無(wú)限疊加。而根據(jù)該原理創(chuàng)立的傅立葉變換算法利用直接測(cè)量到的原始信號(hào),以累加方式來(lái)計(jì)算該信號(hào)中不同正弦波信號(hào)的頻率、振幅和相位。和傅立葉變換算法對(duì)應(yīng)的是反傅立葉變換算法。該反變換從本質(zhì)上說(shuō)也是一種累加處理,這樣就可以將單獨(dú)改變的正弦波信號(hào)轉(zhuǎn)換成一個(gè)信號(hào)。因此,可以說(shuō),傅立葉變換將原來(lái)難以處理的時(shí)域信號(hào)轉(zhuǎn)換成了易于分析的頻域信號(hào)(信號(hào)的頻譜),可以利用一些工具對(duì)這些頻域信號(hào)進(jìn)行處理、加工。最后還可以利用傅立葉反變換將這些頻域信號(hào)轉(zhuǎn)換成時(shí)域信號(hào)。從現(xiàn)代數(shù)學(xué)的眼光來(lái)看,傅里葉變換是一種特殊的積分變換。它能將滿足一定條件的某個(gè)函數(shù)表示成正弦基函數(shù)的線性組合或者積分。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。在數(shù)學(xué)領(lǐng)域,盡管最初傅立葉分析是作為熱過(guò)程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。"任意"的函數(shù)通過(guò)一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對(duì)簡(jiǎn)單的函數(shù)類:1.傅立葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;3.正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時(shí)不變雜的卷積運(yùn)算為簡(jiǎn)單的乘積運(yùn)算,從而提供了計(jì)算卷積的一種簡(jiǎn)單手段;4.離散形式的傅立葉的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對(duì)于復(fù)雜激勵(lì)的響應(yīng)可以通過(guò)組合其對(duì)不同頻率正弦信號(hào)的響應(yīng)來(lái)獲取;5.著名的卷積定理指出:傅立葉變換可以化復(fù)變換可以利用數(shù)字計(jì)算機(jī)快速的算出(其算法稱為快速傅立葉變換算法(FFT))。正是由于上述的良好性質(zhì),傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率、統(tǒng)計(jì)、密碼學(xué)、聲學(xué)、光學(xué)等領(lǐng)域都有著廣泛的應(yīng)用。圖像傅立葉變換的物理意義圖像的頻率是表征圖像中灰度變化劇烈程度的指標(biāo),是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區(qū)域,對(duì)應(yīng)的頻率值很低;而對(duì)于地表屬性變換劇烈的邊緣區(qū)域在圖像中是一片灰度變化劇烈的區(qū)域,對(duì)應(yīng)的頻率值較高。傅立葉變換在實(shí)際中有非常明顯的物理意義,設(shè)f是一個(gè)能量有限的模擬信號(hào),則其傅立葉變換就表示f的譜。從純粹的數(shù)學(xué)意義上看,傅立葉變換是將一個(gè)函數(shù)轉(zhuǎn)換為一系列周期函數(shù)來(lái)處理的。從物理效果看,傅立葉變換是將圖像從空間域轉(zhuǎn)換到頻率域,其逆變換是將圖像從頻率域轉(zhuǎn)換到空間域。換句話說(shuō),傅立葉變換的物理意義是將圖像的灰度分布函數(shù)變換為圖像的頻率分布函數(shù),傅立葉逆變換是將圖像的頻率分布函數(shù)變換為灰度分布函數(shù)。傅立葉變換以前,圖像(未壓縮的位圖)是由對(duì)在連續(xù)空間(現(xiàn)實(shí)空間)上的采樣得到一系列點(diǎn)的集合,我們習(xí)慣用一個(gè)二維矩陣表示空間上各點(diǎn),則圖像可由z=f(x,y)來(lái)表示。由于空間是三維的,圖像是二維的,因此空間中物體在另一個(gè)維度上的關(guān)系就由梯度來(lái)表示,這樣我們可以通過(guò)觀察圖像得知物體在三維空間中的對(duì)應(yīng)關(guān)系。為什么要提梯度?因?yàn)閷?shí)際上對(duì)圖像進(jìn)行二維傅立葉變換得到頻譜圖,就是圖像梯度的分布圖,當(dāng)然頻譜圖上的各點(diǎn)與圖像上各點(diǎn)并不存在一一對(duì)應(yīng)的關(guān)系,即使在不移頻的情況下也是沒(méi)有。傅立葉頻譜圖上我們看到的明暗不一的亮點(diǎn),實(shí)際上圖像上某一點(diǎn)與鄰域點(diǎn)差異的強(qiáng)弱,即梯度的大小,也即該點(diǎn)的頻率的大?。梢赃@么理解,圖像中的低頻部分指低梯度的點(diǎn),高頻部分相反)。一般來(lái)講,梯度大則該點(diǎn)的亮度強(qiáng),否則該點(diǎn)亮度弱。這樣通過(guò)觀察傅立葉變換后的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點(diǎn)數(shù)更多,那么實(shí)際圖像是比較柔和的(因?yàn)楦鼽c(diǎn)與鄰域差異都不大,梯度相對(duì)較?。?,反之,如果頻譜圖中亮的點(diǎn)數(shù)多,那么實(shí)際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對(duì)頻譜移頻到原點(diǎn)以后,可以看出圖像的頻率分布是以原點(diǎn)為圓心,對(duì)稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個(gè)好處,它可以分離出有周期性規(guī)律的干擾信號(hào),比如正弦干擾,一副帶有正弦干擾,移頻到原點(diǎn)的頻譜圖上可以看出除了中心以外還存在以某一點(diǎn)為中心,對(duì)稱分布的亮點(diǎn)集合,這個(gè)集合就是干擾噪音產(chǎn)生的,這時(shí)可以很直觀的通過(guò)在該位置放置帶阻濾波器消除干擾。另外我還想說(shuō)明以下幾點(diǎn):1、圖像經(jīng)過(guò)二維傅立葉變換后,其變換系數(shù)矩陣表明:若變換矩陣Fn原點(diǎn)設(shè)在中心,其頻譜能量集中分布在變換系數(shù)短陣的中心附近(圖中陰影區(qū))。若所用的二維傅立葉變換矩陣Fn的原點(diǎn)設(shè)在左上角,那么圖像信號(hào)能量將集中在系數(shù)矩陣的四個(gè)角上。這是由二維傅立葉變換本身性質(zhì)決定的。同時(shí)也表明一股圖像能量集中低頻區(qū)域。2、變換之后的圖像在原點(diǎn)平移之前四角是低頻,最亮,平移之后中間部分是低頻,最亮,亮度大說(shuō)明低頻的能量大(幅角比較大)。傅立葉變換的基本思想首先由法國(guó)學(xué)者傅立葉系統(tǒng)提出,所以以其名字來(lái)命名以示紀(jì)念。傅里葉變換能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。從現(xiàn)代數(shù)學(xué)的眼光來(lái)看,傅立葉變換是一種特殊的積分變換。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。最初傅里葉分析是作為熱過(guò)程的解析分析的工具被提出的?!斑B續(xù)傅立葉變換”將平方可積的函數(shù)f(t)表示成復(fù)指數(shù)函數(shù)的積分或級(jí)數(shù)形式。為了在科學(xué)計(jì)算和數(shù)字信號(hào)處理等領(lǐng)域使用計(jì)算機(jī)進(jìn)行傅立葉變換,必須將函數(shù)xn定義在離散點(diǎn)而非連續(xù)域內(nèi),且須滿足有限性或周期性條件。這種情況下,使用離散傅立葉變。傅立葉變換屬于調(diào)和分析的內(nèi)容。"分析"二字,就是換,"條分縷析"。通過(guò)對(duì)函數(shù)的"條分縷析"來(lái)達(dá)到對(duì)復(fù)雜函數(shù)的深入理解和研究。從哲學(xué)上看,"分析主義"和"還原主義",就是通過(guò)對(duì)事物內(nèi)部適當(dāng)?shù)姆治鲞_(dá)到增進(jìn)對(duì)其本質(zhì)理解的目的。比如近代原子論試圖把世界上所有物質(zhì)的本源分析為原子,而原子不過(guò)數(shù)百種而已,相對(duì)物質(zhì)世界的無(wú)限豐富,這種分析和分類無(wú)疑為認(rèn)識(shí)事物的各種性質(zhì)提供了很好的手段。盡管最初傅立葉分析是作為熱過(guò)程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征?!ㄈ我狻ǖ暮瘮?shù)通過(guò)一定的分解,都能夠表示為正弦函數(shù)的線性組合的形式,而正弦函數(shù)在物理上是被充分研究而相對(duì)簡(jiǎn)單的函數(shù)類,這一想法跟化學(xué)上的原子論想法何其相似!現(xiàn)代數(shù)學(xué)發(fā)現(xiàn)傅立葉變換具有非常好的性質(zhì),使得它如此的好用和有用:傅立葉變換是線性算子,若賦予適當(dāng)?shù)姆稊?shù),它還是酉算子;傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;正弦基函數(shù)是微分運(yùn)算的本征函數(shù),從而使得線性微分方程的求解可以轉(zhuǎn)化為常系數(shù)的代數(shù)方程的求解.在線性時(shí)不變的物理系統(tǒng)內(nèi),頻率是個(gè)不變的性質(zhì),從而系統(tǒng)對(duì)于復(fù)雜激勵(lì)的響應(yīng)可以通過(guò)組合其對(duì)不同頻率正弦信號(hào)的響應(yīng)來(lái)獲??;卷積定理指出:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版海外房產(chǎn)合伙購(gòu)買協(xié)議3篇
- 2024項(xiàng)目投資與建設(shè)咨詢服務(wù)協(xié)議
- 專用簡(jiǎn)易借款協(xié)議模板2024年版
- 二零二五版公司股權(quán)質(zhì)押及回購(gòu)協(xié)議3篇
- 2025年度私車租賃夜間出行服務(wù)合同2篇
- 二零二五年度智慧城市建設(shè)合作協(xié)議示范文本4篇
- 2024版權(quán)轉(zhuǎn)讓與授權(quán)許可合同
- 2025年生態(tài)園區(qū)產(chǎn)權(quán)車位購(gòu)置及維護(hù)服務(wù)合同4篇
- 二零二四年二手房買賣合同糾紛調(diào)解與仲裁條款3篇
- 二零二五年房車托管服務(wù)與生態(tài)旅游項(xiàng)目合作合同3篇
- 集成電路設(shè)計(jì)工藝節(jié)點(diǎn)演進(jìn)趨勢(shì)
- 新型電力系統(tǒng)簡(jiǎn)介演示
- 特種設(shè)備行業(yè)團(tuán)隊(duì)建設(shè)工作方案
- 眼內(nèi)炎患者護(hù)理查房課件
- 肯德基經(jīng)營(yíng)策略分析報(bào)告總結(jié)
- 買賣合同簽訂和履行風(fēng)險(xiǎn)控制
- 中央空調(diào)現(xiàn)場(chǎng)施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測(cè)定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
- -安規(guī)知識(shí)培訓(xùn)
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級(jí)上冊(cè)期末考試語(yǔ)文試卷(解析版)
評(píng)論
0/150
提交評(píng)論