版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
、三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。3、三角形的穩(wěn)定性三角形的形狀是固定的,三角形的這個性質(zhì)叫做三角形的穩(wěn)定性。三角形的這個性質(zhì)在生產(chǎn)生活中應用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個特性:(1)三角形有三條線段(2)三條線段不在同一直線上三角形是封閉圖形(3)首尾順次相接三角形用符號“”表示,頂點是A、B、C的三角形記作“ABC”,讀作“三角形ABC”。5、三角形的分類三角形按邊的關(guān)系分類如下:不等邊三角形三角形底和腰不相等的等腰三角形等腰三角形等邊三角形三角形按角的關(guān)系分類如下:直角三角形(有一個角為直角的三角形)三角形銳角三角形(三個角都是銳角的三角形)斜三角形鈍角三角形(有一個角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關(guān)系定理及推論(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。(2)三角形三邊關(guān)系定理及推論的作用:①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關(guān)系。7、三角形的內(nèi)角和定理及推論三角形的內(nèi)角和定理:三角形三個內(nèi)角和等于180°。推論:①直角三角形的兩個銳角互余。②三角形的一個外角等于和它不相鄰的來兩個內(nèi)角的和。③三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。8、三角形的面積:三角形的面積=×底×高考點二、全等三角形(3~8分)1、全等三角形的概念能夠完全重合的兩個圖形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。2、全等三角形的表示和性質(zhì)全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、三角形全等的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)(2)角邊角定理:有兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。直角三角形全等的判定:對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)4、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。(2)對稱變換:將圖形沿某直線翻折180°,這種變換叫做對稱變換。(3)旋轉(zhuǎn)變換:將圖形繞某點旋轉(zhuǎn)一定的角度到另一個位置,這種變換叫做旋轉(zhuǎn)變換??键c三、等腰三角形(8~10分)1、等腰三角形的性質(zhì)(1)等腰三角形的性質(zhì)定理及推論:定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個角都相等,并且每個角都等于60°。(2)等腰三角形的其他性質(zhì):①等腰直角三角形的兩個底角相等且等于45°②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。③等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則<a④等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=2、等腰三角形的判定等腰三角形的判定定理及推論:定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。推論1:三個角都相等的三角形是等邊三角形推論2:有一個角是60°的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。等腰三角形的性質(zhì)與判定等腰三角形性質(zhì)等腰三角形判定中線1、等腰三角形底邊上的中線垂直底邊,平分頂角;2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。1、兩邊上中線相等的三角形是等腰三角形;2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形角平分線1、等腰三角形頂角平分線垂直平分底邊;2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。高線1、等腰三角形底邊上的高平分頂角、平分底邊;2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;2、有兩條高相等的三角形是等腰三角形。角等邊對等角等角對等邊邊底的一半<腰長<周長的一半兩邊相等的三角形是等腰三角形4、三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個新的三角形。(2)要會區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。第十章四邊形考點一、四邊形的相關(guān)概念(3分)1、四邊形在同一平面內(nèi),由不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。2、凸四邊形把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。3、對角線在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。4、四邊形的不穩(wěn)定性三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩(wěn)定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩(wěn)定性,它在生產(chǎn)、生活方面有著廣泛的應用。5、四邊形的內(nèi)角和定理及外角和定理四邊形的內(nèi)角和定理:四邊形的內(nèi)角和等于360°。四邊形的外角和定理:四邊形的外角和等于360°。推論:多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于180°;多邊形的外角和定理:任意多邊形的外角和等于360°。6、多邊形的對角線條數(shù)的計算公式設(shè)多邊形的邊數(shù)為n,則多邊形的對角線條數(shù)為??键c二、平行四邊形(3~10分)1、平行四邊形的概念:兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形用符號“□ABCD”表示,如平行四邊形ABCD記作“□ABCD”,讀作“平行四邊形ABCD”。2、平行四邊形的性質(zhì)(1)平行四邊形的鄰角互補,對角相等。(2)平行四邊形的對邊平行且相等。推論:夾在兩條平行線間的平行線段相等。(3)平行四邊形的對角線互相平分。(4)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積。3、平行四邊形的判定(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形(5)定理4:一組對邊平行且相等的四邊形是平行四邊形4、兩條平行線的距離兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。5、平行四邊形的面積S平行四邊形=底邊長×高=ah考點三、矩形(3~10分)1、矩形的概念:有一個角是直角的平行四邊形叫做矩形。矩形的性質(zhì):(1)具有平行四邊形的一切性質(zhì);(2)矩形的四個角都是直角;(3)矩形的對角線相等;(4)矩形是軸對稱圖形。3、矩形的判定(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形(3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積:S矩形=長×寬=ab5、定理:直角三角形斜邊上的中線等于斜邊的一半??键c四、菱形(3~10分)1、菱形的概念:有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)(1)具有平行四邊形的一切性質(zhì)(2)菱形的四條邊相等(3)菱形的對角線互相垂直,并且每一條對角線平分一組對角(4)菱形是軸對稱圖形3、菱形的判定(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形(3)定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積S菱形=底邊長×高=兩條對角線乘積的一半考點五、正方形(3~10分)1、正方形的概念:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。2、正方形的性質(zhì)(1)具有平行四邊形、矩形、菱形的一切性質(zhì)(2)正方形的四個角都是直角,四條邊都相等(3)正方形的對角線相等,且互相垂直平分,每一條對角線平分一組對角(4)正方形是軸對稱圖形,有4條對稱軸(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。3、正方形的判定(1)定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。(2)定理1:對角線相等的菱形是正方形。(3)定理2:對角線垂直的矩形是正方形。(4)定理3:有一個角是直角的菱形是正方形。4、正方形的面積設(shè)正方形邊長為a,對角線長為b。則:S正方形=考點六、梯形(3~10分)1、梯形的相關(guān)概念:一組對邊平行而另一組對邊不平行的四邊形叫做梯形。梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。兩腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下:一般梯形梯形直角梯形特殊梯形等腰梯形2、梯形的判定(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。(2)一組對邊平行且不相等的四邊形是梯形。3、等腰梯形的性質(zhì)(1)等腰梯形的兩腰相等,兩底平行。(3)等腰梯形的對角線相等。(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。4、等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。5、梯形的面積(1)如圖,(2)梯形中有關(guān)圖形的面積:①;②;③6、梯形中位線定理梯形中位線平行于兩底,并且等于兩底和的一半。第十一章解直角三角形考點一、直角三角形的性質(zhì)(3~5分)1、直角三角形的兩個銳角互余可表示如下:∠C=90°∠A+∠B=90°2、在直角三角形中,30°角所對的直角邊等于斜邊的一半?!螦=30°可表示如下:BC=AB∠C=90°3、直角三角形斜邊上的中線等于斜邊的一半∠ACB=90°可表示如下:CD=AB=BD=ADD為AB的中點4、勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即5、射影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的射影的比例中項,每條直角邊是它們在斜邊上的射影和斜邊的比例中項∠ACB=90°CD⊥AB6、常用關(guān)系式:由三角形面積公式可得:ABCD=ACBC考點二、直角三角形的判定(3~5分)1、有一個角是直角的三角形是直角三角形。2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三邊長a,b,c有關(guān)系,那么這個三角形是直角三角形??键c三、銳角三角函數(shù)的概念(3~8分)1、如圖,在△ABC中,∠C=90°①銳角A的對邊與斜邊的比叫做∠A的正弦,記為sinA,即②銳角A的鄰邊與斜邊的比叫做∠A的余弦,記為cosA,即③銳角A的對邊與鄰邊的比叫做∠A的正切,記為tanA,即2、銳角三角函數(shù)的概念銳角A的正弦、余弦、正切都叫做∠A的銳角三角函數(shù)3、一些特殊角的三角函數(shù)值三角函數(shù)0°30°45°60°90°sinα01cosα10tanα01不存在4、銳角三角函數(shù)的增減性:當角度在0°~90°之間變化時,(1)正弦值隨著角度的增大(或減?。┒龃螅ɑ驕p?。?)余弦值隨著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅?)正切值隨著角度的增大(或減?。┒龃螅ɑ驕p?。┛键c四、解直角三角形(3~5)1、解直角三角形的概念在直角三角形中,除直角外,一共有五個元素,即三條邊和兩個銳角,由直角三角形中除直角外的已知元素求出所有未知元素的過程叫做解直角三角形。對邊鄰邊對邊鄰邊斜邊ACB在Rt△ABC中,∠C=90°,∠A,∠B,∠C所對的邊分別為a,b,c(1)三邊之間的關(guān)系:(勾股定理)(2)銳角之間的關(guān)系:∠A+∠B=90°(3)邊角之間的關(guān)系:(4)第十二章圓考點一、圓的相關(guān)概念(3分)1、圓的定義在一個個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。2、圓的幾何表示以點O為圓心的圓記作“⊙O”,讀作“圓O”考點二、弦、弧等與圓有關(guān)的定義(3分)(1)弦:連接圓上任意兩點的線段叫做弦。(如圖中的AB)(2)直徑:經(jīng)過圓心的弦叫做直徑。(如途中的CD)直徑等于半徑的2倍。(3)半圓圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。(4)弧、優(yōu)弧、劣弧圓上任意兩點間的部分叫做圓弧,簡稱弧?;∮梅枴啊小北硎?,以A,B為端點的弧記作“”,讀作“圓弧AB”或“弧AB”。大于半圓的弧叫做優(yōu)?。ǘ嘤萌齻€字母表示);小于半圓的弧叫做劣?。ǘ嘤脙蓚€字母表示)考點三、垂徑定理及其推論(3分)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。推論2:圓的兩條平行弦所夾的弧相等。垂徑定理及其推論可概括為:過圓心垂直于弦直徑平分弦知二推三平分弦所對的優(yōu)弧平分弦所對的劣弧考點四、圓的對稱性(3分)1、圓的軸對稱性:圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。2、圓的中心對稱性:圓是以圓心為對稱中心的中心對稱圖形??键c五、弧、弦、弦心距、圓心角之間的關(guān)系定理(3分)1、圓心角:頂點在圓心的角叫做圓心角。2、弦心距:從圓心到弦的距離叫做弦心距。3、弧、弦、弦心距、圓心角之間的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等??键c六、圓周角定理及其推論(3~8分)1、圓周角:頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。2、圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半。推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形??键c七、點和圓的位置關(guān)系(3分)設(shè)⊙O的半徑是r,點P到圓心O的距離為d,則有:d<r點P在⊙O內(nèi);d=r點P在⊙O上;d>r點P在⊙O外??键c八、過三點的圓(3分)1、過三點的圓:不在同一直線上的三個點確定一個圓。2、三角形的外接圓:經(jīng)過三角形的三個頂點的圓叫做三角形的外接圓。3、三角形的外心:三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。4、圓內(nèi)接四邊形性質(zhì):圓內(nèi)接四邊形對角互補。四點共圓的判定1、對角互補,四點共圓。2、外角等于內(nèi)對角,四點共圓。3、同線段同向所張的角相等,四點共圓。4、切割線定理的逆命題也成立,四點共圓??键c九、反證法(3分)先假設(shè)命題中的結(jié)論不成立,然后由此經(jīng)過推理,引出矛盾,判定所做的假設(shè)不正確,從而得到原命題成立,這種證明方法叫做反證法??键c十、直線與圓的位置關(guān)系(3~5分)直線和圓有三種位置關(guān)系,具體如下:(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:直線l與⊙O相交d<r;直線l與⊙O相切d=r;直線l與⊙O相離d>r;考點十一、切線的判定和性質(zhì)(3~8分)1、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。2、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑??键c十二、切線長定理(3分)1、切線長:在經(jīng)過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。2、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角??键c十三、三角形的內(nèi)切圓(3~8分)1、三角形的內(nèi)切圓:與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。2、三角形的內(nèi)心:三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心??键c十四、圓和圓的位置關(guān)系(3分)1、圓和圓的位置關(guān)系如果兩個圓沒有公共點,那么就說這兩個圓相離,相離分為外離和內(nèi)含兩種。如果兩個圓只有一個公共點,那么就說這兩個圓相切,相切分為外切和內(nèi)切兩種。如果兩個圓有兩個公共點,那么就說這兩個圓相交。2、圓心距兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關(guān)系的性質(zhì)與判定設(shè)兩圓的半徑分別為R和r,圓心距為d,那么兩圓外離d>R+r兩圓外切d=R+r兩圓相交R-r<d<R+r(R≥r)兩圓內(nèi)切d=R-r(R>r)兩圓內(nèi)含d<R-r(R>r)4、兩圓相切、相交的重要性質(zhì)如果兩圓相切,那么切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦??键c十五、正多邊形和圓(3分)1、正多邊形的定義各邊相等,各角也相等的多邊形叫做正多邊形。2、正多邊形和圓的關(guān)系只要把一個圓分成相等的一些弧,就可以做出這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓??键c十六、與正多邊形有關(guān)的概念(3分)1、正多邊形的中心正多邊形的外接圓的圓心叫做這個正多邊形的中心。2、正多邊形的半徑正多邊形的外接圓的半徑叫做這個正多邊形的半徑。3、正多邊形的邊心距正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。4、中心角正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角??键c十七、正多邊形的對稱性(3分)1、正多邊形的軸對稱性正多邊形都是軸對稱圖形。一個正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。2、正多邊形的中心對稱性邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。3、正多邊形的畫法先用量角器或尺規(guī)等分圓,再做正多邊形??键c十八、弧長和扇形面積(3~8分)1、弧長公式:n°的圓心角所對的弧長l的計算公式為2、扇形面積公式:(其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。)3、圓錐的側(cè)面積:(其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑。)補充:(此處為大綱要求外的知識,但對開發(fā)學生智力,改善學生數(shù)學思維模式有很大幫助)1、相交弦定理⊙O中,弦AB與弦CD相交與點E,則AEBE=CEDE2、弦切角定理弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角。弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角。即:∠BAC=∠ADC3、切割線定理PA為⊙O切線,PBC為⊙O割線,則第十三章圖形的變換考點一、平移(3~5分)1、定義把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。2、性質(zhì)(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動(2)連接各組對應點的線段平行(或在同一直線上)且相等??键c二、軸對稱(3~5分)1、定義把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線成軸對稱,該直線叫做對稱軸。2、性質(zhì)(1)關(guān)于某條直線對稱的兩個圖形是全等形。(2)如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線。(3)兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。3、判定如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。4、軸對稱圖形把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸??键c三、旋轉(zhuǎn)(3~8分)1、定義把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。2、性質(zhì)(1)對應點到旋轉(zhuǎn)中心的距離相等。(2)對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角??键c四、中心對稱(3分)1、定義把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。2、性質(zhì)(1)關(guān)于中心對稱的兩個圖形是全等形。(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。(3)關(guān)于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。3、判定如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。4、中心對稱圖形把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心??键c五、坐標系中對稱點的特征(3分)1、關(guān)于原點對稱的點的特征兩個點關(guān)于原點對稱時,它們的坐標的符號相反,即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)2、關(guān)于x軸對稱的點的特征兩個點關(guān)于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)3、關(guān)于y軸對稱的點的特征兩個點關(guān)于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)第十四章圖形的相似考點一、比例線段(3分)1、比例線段的相關(guān)概念如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么這兩條線段的比就是它們長度的比,即或?qū)懗蒩:b=m:n。線段a,b分別叫做這個線段比的前項和后項。線段a,b,c,d中,如果a與b的比等于c與d的比,即,那么這四條線段a,b,c,d叫做成比例線段,簡稱比例線段。線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。2、比例的性質(zhì)(1)基本性質(zhì):①a:b=c:dad=bc;②a:b=b:c(2)更比性質(zhì)(交換比例的內(nèi)項或外項)(交換內(nèi)項)(交換外項)(同時交換內(nèi)項和外項)(3)反比性質(zhì)(交換比的前項、后項):(4)合比性質(zhì):(5)等比性質(zhì):3、黃金分割把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=AB0.618AB考點二、平行線分線段成比例定理(3~5分)兩條直線被一組平行線所截,所得的對應線段成比例。推論:(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。考點三、相似三角形(3~8分)1、相似三角形的概念三角分別相等、三邊成比例的兩個三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數(shù))。2、相似三角形的基本定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。用數(shù)學語言表述如下:∵DE∥BC,∴△ADE∽△ABC相似三角形的等價關(guān)系:(1)反身性:對于任一個△ABC,都有△ABC∽△ABC;(2)對稱性:若△ABC∽△A’B’C’,則△A’B’C’∽△ABC(3)傳遞性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,則△ABC∽△A’’B’’C’’。3、三角形相似的判定(1)三角形相似的判定方法①定義法:對應角相等,對應邊成比例的兩個三角形相似。②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。③判定定理1:兩角分別相等的兩個三角形相似。④判定定理2:兩邊成比例且夾角相等的兩個三角形相似。⑤判定定理3:三邊成比例的兩個三角形相似。(2)直角三角形相似的判定方法①以上各種判定方法均適用②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。4、相似三角形的性質(zhì)(1)相似三角形的對應角相等,對應邊成比例。(2)相似三角形對應高的比、對應角平分線的比、對應中線的比都等于相似比。(3)相似三角形的周長比等于相似比。(4)相似三角形的面積比等于相似比的平方。5、相似多邊形(1)如果兩個邊數(shù)相同的多邊形的對應角相等,對應邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數(shù))(2)相似多邊形的性質(zhì)①相似多邊形的對應角相等,對應邊成比例②相似多邊形周長的比、對應對角線的比都等于相似比③相似多邊形中的對應三角形相似,相似比等于相似多邊形的相似比④相似多邊形面積的比等于相似比的平方6、位似圖形如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。性質(zhì):每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比等于位似比。由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。
本科生學位論文論多媒體技術(shù)在教學中的應用姓名:指導教師:專業(yè):教育管理專業(yè)年級:完成時間:
論多媒體技術(shù)在教學中的應用[摘要]多媒體不再是傳統(tǒng)的輔助教學工具,而是為構(gòu)造一種新的網(wǎng)絡(luò)教學環(huán)境創(chuàng)造了條件,特別是對于教育社會化來說,多媒體網(wǎng)絡(luò)是一種更理想的傳播工具。多媒體本身具有:融合性、非線性化,無結(jié)構(gòu)性、相互交涉性、可編輯性、實時性等特點;同時運用在教育教學上又有其特長:利于信息的存儲利用、是培養(yǎng)發(fā)散性思維的工具、促使學習個別化的實現(xiàn)。多媒體在教學中的應用有著多種的形式,它在提高學生學習興趣上有著積極的作用,同時它還能促進學生知識的獲取與保持、對教學信息進行有效的組織與管理、建構(gòu)理想的學習環(huán)境,促進學生自主學習等多方面的效果。立足未來發(fā)展,利用多媒體網(wǎng)絡(luò)技術(shù),開展教學試驗。[關(guān)鍵詞]多媒體網(wǎng)絡(luò)教學系統(tǒng)資源共享多媒體技術(shù)主要指多媒體計算機技術(shù),加工、控制、編輯、變換,還可以查詢、檢索。人們借助于多媒體技術(shù)可以自然貼切地表達、傳播、處理各種視聽信息,并具有更多的參與性和創(chuàng)造性。當今多媒體已成為廣泛流傳的名詞,但人們對于它的認識,特別是對于它在教育教學方面如何更好應用,未知的因素還很多。
一、多媒體的教育特長任何一種媒體不管其怎樣先進,它只能是作為一種工具被應用到教育領(lǐng)域,能不能促進教育的改革,。。。。。。應當吸取教訓,加強理論研究,充分認識多媒體的特性及其教育特長,以便更好地在教育領(lǐng)域開發(fā)應用多媒體。
1、多媒體的特性
(1)融合性多種符號系統(tǒng)的融合是多媒體的特性之一,多媒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滬科版八年級物理全一冊《2.1聲音的產(chǎn)生與傳播》同步測試題含答案
- 高一化學第四單元非金屬及其化合物第四講氨硝酸硫酸練習題
- 2024屆河南省淇縣某中學高考模擬試卷(化學試題文)試卷含解析
- 2024高中地理第4章區(qū)域經(jīng)濟發(fā)展第2節(jié)第2課時問題和對策學案新人教版必修3
- 2024高中語文第四單元創(chuàng)造形象詩文有別賞析示例過小孤山大孤山學案新人教版選修中國古代詩歌散文欣賞
- DB37-T 5307-2024 住宅小區(qū)供水設(shè)施建設(shè)標準
- 肩周炎中醫(yī)診療指南
- 深圳城市的發(fā)展歷程
- 2025版:勞動合同法企業(yè)合規(guī)培訓及風險評估合同3篇
- 三講課件知識課件
- 3D打印行業(yè)研究報告
- 魯教版(五四制)七年級數(shù)學下冊電子課本教材
- 人教版八年級物理上冊 1.5運動圖像(專題練習)原卷版+解析
- 公共資源交易培訓課件
- 護理實習針灸科出科小結(jié)
- 信息系統(tǒng)集成方案
- 推廣智慧小程序方案
- 業(yè)主與物業(yè)公司調(diào)解協(xié)議書
- 燃氣泄漏預警系統(tǒng)設(shè)計
- 腸易激綜合癥
- 神經(jīng)根型腰椎病護理查房課件
評論
0/150
提交評論