版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
PAGE
PAGE
23
AnnualReviewsinControl31(2007)211一20
Futuretrendsinprocessautomation
AuthorVitae
HelsinkiUniversityofTechnology,LaboratoryofProcessControlandAutomation,Kemistintie1,FI-02150,Espoo,Finland
Received27April2007
Accepted29August2007
Availableonline29October2007
Abstract
Theimportanceofautomationintheprocessindustrieshasincreaseddramaticallyinrecentyears.Inthehighlyindustrializedcountries,processautomationservestoenhanceproductquality,masterthewholerangeofproducts,improveprocesssafetyandplantavailability,efficientlyutilizeresourcesandloweremissions.Intherapidlydevelopingcountries,massproductionisthemainmotivationforapplyingprocessautomation.Thegreatestdemandforprocessautomationisinthechemicalindustry,powergeneratingindustry,andpetrochemicalindustry;thefastestgrowingdemandforhardware,standardsoftwareandservicesofprocessautomationisinthepharmaceuticalindustry.
Theimportanceofautomationtechnologycontinuestoincreaseintheprocessindustries.Thetraditionalbarriersbetweeninformation,communicationandautomationtechnologyare,intheoperationalcontext,graduallydisappearing.Thelatesttechnologies,includingwirelessnetworks,fieldbussystemsandassetmanagementsystems,boosttheefficiencyofprocesssystems.Newapplicationfieldslikebiotechnologyandmicrotechnologyposechallengesforfuturetheoreticalworkinthemodeling,analysisanddesignofcontrolsystems.Inthispapertheindustrytrendsthatareshapingcurrentautomationrequirements,aswellasthefuturetrendsinprocessautomation,arepresentedanddiscussed.
Keywords
Processautomation;
Futuretrends
1.Introduction
Thestartingpointsinassessingthefutureneedsforautomationare,ontheonehand,globaldevelopmentandeconomictrends,and,ontheother,thewayinwhichtheyarereflectedinthedevelopmentofsocietyandtheeconomy.Globalriskmanagementwillattainevergreaterimportanceinthefuture.Inparticular,bettercontrolandanticipationisneededinordertocontaintherisksrelatedtotheeconomy,environment,energyandinfrastructure.Facedwithclimatechangeandagrowingscarcityofrawmaterials,theworldneedstofindanddevelopnewenvironmentalandenergysolutions.Theworld'swatersupplyisalsoinneedofdevelopment.Internationalcompetitionandglobalbusinessenvironmentsreacheverywhere.Businessoperationsandcapitalmarketsaredynamic;theyseekenvironmentsthatofferthebestopportunitiesforsuccessinopencompetition.Inadditiontobusinessandproduction,alsoR&Dseeksthebestpossibleoperationalenvironments.Economic,organizationalandtechnologicaltrendswillcausesignificantchangesinautomationtechnologyduringthenextfewyears.
Bydevelopingtechnologies,itispossibletofindsolutionstothebasicneedsofsocietyandtheindustry.Thedevelopmentoftechnologyhelpstomaintainallofthecurrentcompetitiveadvantagesandtocreatenewonesinmanynewfields,thusfurtherimprovingprosperityandwell-being.Thedevelopmentofhightechnologyapplicationsfurtherbooststheintroductionofnewcooperationmodels:networkingamongbusinesscompanies,universitiesandresearchinstitutes,aswellasdecision-makersinthepublicsector.Atrans-disciplinaryapproache.g.inmaterialsdevelopmentrequiresexpertiseinphysics,chemistry,biomaterials,electronics,communications,programmingandautomation.
Globalizationalongbringswithitsocialchallengesandproblemsintheinteractionbetweendifferentpopulationgroupsandcultures.Thegrowthofmulticulturalismrequiresnewmanagementpractices,knowledgeofforeigncultures,andtheabilitytosupportandtakeadvantageoftheexistenceofminoritiesanddifference.Themanagementanddevelopmentofskillsandcompetencesinadecentralizedorganizationisbecomingincreasinglyimportant.
Theimportanceofautomationintheprocessindustryhasincreaseddramaticallyinrecentyears.Ithasbecomeaforceintheentirechemical,oil,gasandbiotechnologyindustries.Innovativeinstrumentationsystemsnowcontrolcomplexprocesses,ensuringprocessreliabilityandsafety,andprovideabasisforadvancedmaintenancestrategies.Incessantcostpressuresinthechemicalandbioindustriesleavenoalternativetoimprovedproductivity.Companiesneedtotakeaholisticapproachtoquality,costandtimeissues,andautomationengineeringwillplayacentralrole.Processcontrolensuresthattheplantassetscontinuouslyoperatepredictablywithinthemostprofitablerange,leadingtoagreateroutputofconsistentproducts,reliability,yieldandqualityusinglessenergy.Thistechnologywillhelpincreaseproductivity,improvequalityandacceleratesystemmodificationandretrofittingactivitydesignedtoincreaseflexibility.
Inthispapertheindustrytrendsthatareshapingcurrentautomationrequirements,aswellasthefuturetrendsinprocessautomation,arepresentedanddiscussed.Thepaperisstructuredasfollows:InSection2developmentoftheautomationmarketfortheprocessindustriesupuntil2010ispresented:marketdevelopmentsbyindustries,regionsandproductandservices.InSection3futureautomationtechnologytrends,liketheintegrationofproductionandbusinessoperationsandindustrialcommunicationtechnologies,arediscussed.Thepaperendswithrecentaccomplishmentsandfutureapplicationtrendsinprocessautomation.
2.Developmentoftheautomationmarketfortheprocessindustriesupuntil2010
2.1.Marketdevelopmentsbyindustries
AccordingtothereportbyIntechnoConsulting(Basel,Switzerland),theworldmarketforprocessautomationwillgrowatanaverageannualrateof5.1%between2005and2010toreach94.2billion$in2010.Thegreatestdemandforprocessautomationisinthechemicalindustry,powergeneratingindustry,andpetrochemicalindustry;thefastestgrowingdemandforhardware,standardsoftwareandservicesofprocessautomationisinthepharmaceuticalindustry.Theshareofhardwareisexpectedtocontinuetoshrink.Figure1showsthefutureworldmarketdevelopmentforprocessautomationinindividualapplicationsectors.
Fig.1.Developmentoftheworldmarketforprocessautomationupuntil2010—segmentationbyindustries
2.2.Marketdevelopmentbyregions
NorthAmericaistheleadingmarketforprocessautomation.Asia-PacificandEasternEuropearewinningmarketsharesfromWesternEuropeandNorthAmerica.ChinaisagrowingengineforautomationinAsia,inspiteofitslowerlevelsofplantautomation.India,too,isgainingmarketsharesworldwide.Inthehighlyindustrializedcountriesprocessautomationservestoenhanceproductquality,masterthewholerangeofproducts,improveprocesssafetyandplantavailability,efficientlyutilizeresourcesandloweremissions.Intherapidlydevelopingcountries,masteringmassproductionisthemainmotivationforapplyingprocessautomation.Qualityandenvironmentalaspectsare,however,gainingimportanceaswell.
2.2.1.Marketdevelopmentbyproductandservices
About39.3%oftheautomationhardwareboughtin2000werefortheprocesscontrollevel,and60.7%forthefieldlevel,includingallsensors,measurementequipment,andactuatorsintegratedinthevariousprocesstechnologicalmachines.By2010,theshareofcontrollevelhardwareoutofthetotalhardwarewillshrinkto35.8%worldwide.Intelligenceismovingtofieldlevelandthecontrollevelproductsandthesystemsarebecomingcheaper—theyareincreasinglybecomingcommodities.ParticularlystronggrowthwillbeseeninfieldbuscommunicationandEthernet/TCP-IPcomponents.Theformerisexpectedtogrowatarateof8.2%/year,andthatofthelattershouldbearound17%.
Theshareofexternalengineeringdemandwillkeepincreasingworldwide.Itisexpectedtorisefrom13.9%in2000to15.5%in2010.Engineeringexpendituresareexpectedtofurtherincrease,especiallyinthoseindustrieswithprototypeplants.Thetrendtowardsrationalizationandplantoptimization,accompaniedbyincreasedintegrationofautomationsystemswiththeinformationsystemsoftheproductionsiteandtheenterpriselevel,willfurtheraddtotheengineeringshareoutofthetotalplantprojectcosts.
3.Futuretechnologytrendsinautomation
3.1.Currentstatusoftheindustrialcommunicationtechnologies
Evolutionofcommunicationtechnologieshashadastronginfluenceonchangesinthestructureofindustrialautomationsystems.Upuntilnow,communicationsupportinplantautomationsystemshasbeendefinedaccordingtothecomputerintegratedmanufacturing(CIM)concept.Inthishierarchicalstructure,differentlevelsoffunctionalityareidentifiedinsuchawaythateachdeviceisdesignedforaspecifictask,andspecificnetworksareusedtointerconnectdevicesatthesamelevel,i.e.thoserunningthesametask.
However,thedeviceshaverecentlystartedtoincludemorethanonefunction,ormodule,whichincreasestheintelligenceleveloftheequipmentautomation.Deviceslikesensorsthathavetraditionallybeenusedformeasurementnowhavetosupporte.g.maintenanceormonitoringtasks.Thismeansthatthetraditionalhierarchicalstructurehastobereplacedbyadistributedcommunicationarchitecture.Nevertheless,thehierarchicalstructurestillexists–andthisisalsoadvisable–inmostoftheprocesscontrolstrategies.
Abriefsurveyofthemostimportantindustrial,low-layerprotocols(referringtotheISOmodel)isgiveninthefollowing.Inaddition,somecurrentlyessentialoremerginghigh(ISOmodel)layerdataspecificationsarealsodescribed.
3.1.1.Low-layercommunicationprotocols
Themostwidelyavailableindustrialnetworksatthepresenttimecanbeclassifiedintothreemaincategories:traditionalfieldbusses,Ethernet-basednetworksandwirelessnetworks.
TheworldwideleaderswithintheautomationdomainwithrespecttothenumberofinstalledFieldbusnodesareheldbyPROFIBUS(about14millionnodes)andInterbus(about7millionnodes).AgoodcommercialpositionisalsoheldbyFoundationFieldbus.Fieldbustechnologyhasreachedastablephasewithinindustrialautomation,andfulfillsthecurrenttechnicalrequirementsoflocalindustrialcommunicationsatthefieldlevelofanenterprise.
HARTandFoundationFieldbushaveopenedthedoortofieldintelligence.Instrumentsarenotonlysmarterabouttheprocessvariablestheymonitorandmanage,buttheyarealsomoreeffectiveatdiagnosingtheirownhealth.Thenextstageistowidenthisdiagnosticcapabilitytotheprocesssurroundingtheinstrument.Asthistrendcontinues,wewillbenefitfrompredictiveintelligence.Wewillknowmoreaboutthehealthoftheprocess,whichwillenableearlierdetectionofpotentialproblemsandprofit-draininginefficiencies.Wewillmovefromabnormalsituationmanagementtoabnormalsituationprevention.
Theincreaseddatatransferneedshavegraduallyfavouredtheadoptionofthecurrentlypopularofficenetworktechnology–Ethernet-basednetworks–intoindustrialenvironments.Severalorganizations(e.g.IAONA(IndustrialAutomationNetworkingAlliance))arepromotingtheuseofEthernetinindustrialautomation.Intheseapplications,thefieldbusstandardsalsoincludeEthernet-basednetworks,whichimplementtheEthernetprotocolinlowlayers.Themaindevelopmentareaisthereal-timerequirementsofthesenetworks.Currently,theworkinggroupIEC(InternationalElectrotechnicalCommission)WG11isrefiningtheRTErequirements.TheEthernet-basedindustrialnetworksincludedintheIEC61784standardare:Ethernet/IP,Profinet,Interbus,Vnet/IP,TCnet,EtherCAT,Powerlink,ModbusTCPandSercosIII.
InthesamewayasforEthernet,thewirelessarchitectureshavealsostartedtobeadoptedforindustrialuse.Atthepresenttimetherearenoestablishedandwidelyacceptedwirelessfieldbusses.However,supportfortheWirelessLocalAreaNetwork(WLAN)usingofficestandardizedIEEE802.11(
IEEE,1999
)isbecomingmoreandmoreestablished.AnotherinterestingdevelopmentareadealswiththeWirelessPersonalAreaNetwork(WPAN)technologies,includingBluetoothnetworkIEEE802.15.1/BT(
Haarsten,2000
)andthenetworkcurrentlyunderdevelopmentIEEE802.15.4/ZigBee(
IEEE,2003
).
Wirelesscommunicationhasalottoofferintheprocessindustry.Thetechnologyhasattractivefeaturesasitreducestheneedforcomplicated,expensivecablingatlargechemicalplants.Maintenancepersonnelontheproductionfloorcanremainincontactwiththecontrolcentre.Isolatedinstrumentation,forexamplepumpstationslocatedatremotesitesinthemountains,canbeintegratedintotheautomationstrategy.Wirelesstechnologyalsoofferstheadvantageofflexibility.Easeofuse,visualization,parametrization,anddiagnosticsthroughremotelinksareimportantconsiderations.
3.1.2.High-layerdataspecifications
Thecommunicationpartofanautomationdevicemighthavetoexchangedifferentkindsofdatalikeprocessmeasurements,controls,diagnosis,monitoring,historicaldata,etc.Inordertomanagethesedifferenttypesofdata,thecommunicationstackdefineshighlayerswhichcontributetotheintegrationoftheinformationsourcesandtothespecificationoftheproductdataandsafetyandsecuritydata.
TheinformationstandardsforprocessoperationandmaintenancearedrivenbyOpenO&MInitiativejointworkinggroups,mainlyrepresentingthreeindustrialorganizations:MIMOSA(fortheassetmanagementrelatedinformationstandards),theOPCFoundation(fordatatransportstandards)andISA'sSP95(forEnterprise-ControlSystemIntegrationStandardsCommittee).Oneofthemoststronglyestablishedstandards,theOPC,alsoenablestheuseofstateofthearttechnologiessuchaswebservices,theabilitytoprovidesecuredataexchange,andtheuseofencapsulateddatawitheXtensibleMarkupLanguage(XML).Ontheotherhand,thetraditionalfieldbusses(likeProfibusorFoundationFieldbus)havedefinedtheFDT/DTMconceptformanufacturer-independentintegrationoffielddevices.
3.2.Integrationofproductionandbusinessoperations
Plantsinthedifferentprocessindustryfieldsmustbeseenasproductionsystems:theirelementsaretheprocess(materialtransformation),inboundlogistics(materialtransport),theplant(physicalshell),automation(automaticoperation)andorganization(manualoperation,supervision,management).Operationisacollaborativeprocessofthisproductionsystem.Optimizationmeansthebestallocationoffunctionstothesecomponentsoftheproductionsystem.Thisintegratedapproachisincreasinglybeingexpandedtoproductionnetworksrepresentingcompletevalue-creatingproductionchains.Suppliersandcustomersareoftenincludedinthisapproach.
Virtuallyseamlesshorizontalandverticalintegrationofinformation,communicationsandautomationtechnologythroughoutthewholeorganizationisthusneededinordertoaddressthecomplexityoftoday'sprocesses.Thebuzzwordintheindustryisseamlesscommunications.ManufacturingExecutionSystems(MES),whicharenormallypositionedbetweentheEnterpriseResourcePlanning(ERP)andcontrolsystemlevels,canbeusedtooptimizeabusinessprocessontheshopfloor,improveproductquality,increaseprocessreliabilityandreducecomplianceandvalidationefforts.Thewell-knownproductioncontrol(MES)systemsintheprocessindustriesincludeABBindustrialITproductionPlanning,HoneywellExperionPKS-Optivision,MetsoDNAMES,TietoenatorTIPSandSiemensSimaticIT-Systems.ThemainmodulesoftheERPsystemsareMasterProductionSchedule,MaterialRequirementsPlanning,LogisticsandCustomerServiceManagement.ThemarketleaderoftheERPsystemsistheGermanSAPAG.i2Technolgies,andASPAGAPOsystemsarecorrespondinglythemostcommonAPSsystemsonthemarketforsupplychainmanagement.Plantoptimization,accompaniedbyincreasedintegrationofautomationsystemswiththeinformationsystemsoftheproductionsiteandtheenterpriselevel,isjustifiablealsoexpectedtobethemainobjectiveoftheprocessautomationintheseenterprisesinthenearfuture.
4.Recentaccomplishmentsandfutureapplicationtrendsinprocessautomation
4.1.ProcesscontrolandMPC
Modelpredictivecontrolhasbecomeastandardmultivariablecontrolsolutioninthecontinuousprocessindustry,andnowcoversover90%ofindustrialimplementationsofmultivariablecontrol.Onereasonforitssuccessisitsabilitytohandlemultivariablesystemssubjecttoinputandoutputconstraints.
ThefirstdescriptionofMPCcontrolapplicationwaspresentedbyRichalet,andthedevelopedsoftwarewascalledIDCOM.Thedynamicmatrixcontrol(DMC)algorithmalsorepresentedthefirstgenerationofMPCtechnologyandwasdevelopedbyShellOilengineers.
Asuccessfulindustrialcontrollerfortheprocessindustriesmustmaintainthesystemascloseaspossibletotheconstraints.ThesecondgenerationMPCalgorithm,likeQDMC,providedasystematicwaytoimplementtheseinputandoutputconstraints,buttherewasnoclearwaytohandleinfeasiblesolutions.ThethirdgenerationMPCalgorithmsdistinguishedbetweenseverallevelsofconstraints(hard,soft,ranked),providedamechanismtorecoverfromaninfeasiblesolution,addressedtheissuesresultingfromacontrolstructurethatchangesinreal-time,providedarichersetoffeedbackoptions,andallowedforawiderrangeofprocessdynamics(stable,integratingandunstable)andcontrollerspecifications.TheincreasedcompetitionandmergersofseveralMPCvendorshaveledtothetwomainfourthgenerationMPCproducts:RMPCTofferedbyHoneywell,andDMC-plusofferedbyAspenTechnologywithfeaturessuchasmultipleoptimizationlevelstoaddressprioritizedcontrolobjectives,additionalflexibilityinthesteady-statetargetoptimizationincludingQPandeconomicobjectives,directconsiderationofmodeluncertainty(robustcontroldesign),andimprovedidentificationtechnologybasedonpredictionerrormethodsandsub-spacemethods.
ThousandsofMPCapplicationshavebeenreportedinawidevarietyofapplicationareas.Mostofthemhavebeeninrefining,butasignificantnumberofapplicationscanalsobefoundinthepetrochemicalandchemicalsectors.Significantgrowthareasincludethepulpandpaperandfoodprocessingindustries.ThefirstmultivariableMPCtechnologytocovertheentirepapermakinglinehasrecentlybeenpublished.ThelargestnumberofnonlinearMPCapplicationsencompasschemicals,polymersandairandgasprocessing,ThesizeandscopeofNMPCapplicationsaretypicallymuchsmallerthanthoseoflinearMPCapplications.Majordevelopmentsintheprocesscontrolcommunityingeneralaimingatcontributionstosystemsandcontroltheoryareexpected,e.g.innonlinearoptimalcontrol,combinedstateandparameterestimationfornonlinearsystems,robustnessanalysisandrobustsynthesismethodsfornonlinearsystems,spatialdecomposition,decentralizationandhorizontalcoordinationoflarge-scalenonlinearnetwork-likeprocessesandhybriddiscrete-continuouscontroltheoryemphasizingsystemswithequallycomplexdiscreteaswellascontinuousparts.Forthelatestreviewonfuturetrendsinprocesscontrolsee(Dochain.2006).
4.2.ApplicationsofAImethods
MostoftheapplicationsoftheAImethodsintheprocessindustrieshavebeendesignedforunitprocessesinthebeginningoftheproductionchain,especiallyinpulping,mineralandmetalprocessing.Atypicalfeatureoftheseprocessesisthedifficultiesinvolvedinconstructingdetailedmechanisticmodels.Increasinginternationalcompetitionisforcingtheprocessindustrytobemoreefficientandtoemphasizetheimportanceofthehighqualityoftheendproduct.ThemostsuccessfulAIapplicationscanbefoundintheareaofqualitycontroloftheendproducts,whereasmallimprovementincontrolcangiveaconsiderablecompetitiveedgetotheenterprisecomparedtoitscompetitors.
Theimportanceofartificialintelligencetechniquesinreal-timeprocesscontrolisemphasizedinmanyofthepublishedarticles,andtheMMprocessesespeciallyarereportedtobenefitfromtheapplicationofAItechniques.
4.3.Processmonitoringandfaultdiagnosis
Monitoringthequalityoftheproductonlineandpredicting/preventingprocessdisturbancesarethekeyissuesinproducinghigherqualityproducts,optimizingtheproductionchain,andtherebyimprovingtheefficiency.Operationalsafetyofprocessesisofimportanceandthereforeshouldbethefirstobjectiveofprocesscontrol.Problemscausedbyoperationalfaultsrangefromincreasedoperationalcoststoforcedshutdownofprocesses.Theincreasedcomplexityandthedegreeofintegrationofmodernchemicalplantsmeansthatthepotentialeconomiclossisgreaterandthediagnosisoffaultlocationsmoredifficult.ItisestimatedthatinadequatemanagementofabnormalprocesssituationscausesannuallossesofUS$20billioninthepetrochemicalindustryintheUSA.Consequently,managingdisturbancesisseenasthenextchallengeindevelopingandimplementingnewcontrolsystems.
Venkatasubramanianpublishedareviewofmonitoringmethods,especiallythoseappliedinthefieldofchemicalprocesses.Theyclassifiedthemethodsaccordingtotheformofprocessknowledgeused.Onecategoryisbasedonprocessmodels,andincludesbothqualitativecausalmodelsandquantitativemethods.Theothercategoryisbasedonprocesshistory,andincludesbothqualitative(e.g.rule-based)andquantitativemethods(neuralnetworksandmultivariatestatisticalmethods).Alargenumberofsuccessfulapplicationshavebeenreviewed,e.g.byKomulainen.
4.4.Thenewextendedroleofoperatorsandoperator-supportsystems
Inrecentyearstheprocessindustryhasexplicitlydevelopedandimplementednewautomationandinformationtechnologiesinordertoremaincompetitive.Thishasledtoasituationwheremassiveamountsofmeasurementdataarenowavailable.Atthesametime,thetechnologyhasadvancedandthenumberofoperatorsatplantshasdecreased,thusmakingtheirworkmoredemandingwithmoreresponsibilities.Newchallengesintheoperator'sworkarethemanagementofcriticalsituationsanddecisionmakinginarangeofproblemsituations.Incriticalsituations,thedecisionsmustbemadequicklyandthereforealltherelevantinformationmustbereadilyandeasilyaccessible.
Astudytoanalysethefeaturesanduseoftheoperator'ssupportsystemsattwoFinnishpapermillshasrecentlybeencarriedout.Automationsystemsattheplantincludeavarietyofsolutionsprovidedbydifferentvendorsandwhichhadbeeninuseforverydifferentperiodsoftime.Theproductionlineshavethefollowingprocesscontrolandinformationmanagementsystems:processcontrol,machinecontrol,qualitycontrol,webinspection,processanalysis,productionplanning,andconditionandrunnabilitymonitoringsystems.Onehundredoperatorswereinterviewed.Themostcriticalandmostwidelyusedsystemswereprocesscontrol,qualitycontrolandmonitoring,aswellasproductionplanningsystems.Accordingtothestudy,only30–40%oftheexistingoperator-supportsystemscurrentlyinstalledatproductionsiteswereactuallyusedduetotheusabilityproblemsandoperators’poorknowledgeofthesystems.Themainreasonsforinfrequentuseofprocessoperationsupportsystemsarepresentedin.
Mostoftheinformationaffectingthedecision-makingprocessduringthecriticalsituationsissocalledtacitknowledge.Ensuringthatthistacitknowledgeisretainedaslargegroupsofolderoperatorsretire,especiallyinEurope,willbeanadditionalchallengefortheprocessindustry.Inthefuture,theefficientmanagementofknowledgesupportingthedecisionmakingwillthusbecomemoreandmoreimportant.Onecleartrendinthedevelopmentofprocesscontrolsystemsistoincludefeaturesforknowledgeandinformationmanagement.Theknowledgeandperformancesupportsystemswillbeintegratedasapartofprocesscontrolsystems,makingitanoptimalsolutiontosupportoperationsinthewholeproductionline.
Thestudyofinteractionsbetweenhumanandmachinesisanimportantaspectintheadoptionofcontroltechnologies,andinvolvesbothtechnicalissuesandsocialimplications.Humanmachinestudiesconsideralltheconditionswherehumansuse,controlorsupervisetools,machinesortechnologicalsystems.Itfostersanalysis,design,modelingandevaluationofhumanmachinesystems(HMS),whichincludedecision-makingandcognitiveprocesses,modelingofhumanperformance,realandvirtualenvironments,designmethodology,taskallocation-sharingandjobdesign,intelligentinterfaces,humanoperatorsupport,workorganization,andselectionandtrainingcriteria.OverthelastfewdecadestherehasbeenashiftfromthemorehardwareorientedHMStopicstothemoresoftwareandsystemorientedtopics.
Informationisaverypowerfulassetthatcanprovidesignificantbenefitsandacompetitiveadvantagetoanyorganization,includingcomplexproductiontechnologies.Inthecaseofcomplexprocessesthedesignofanintegratedinformationsystemisextremelyimportant.Thereisalsoacleartrendtousetheso-calleddatawarehousingmethodsbywhichthedatacanbeusedforquery,reportinganddataanalysistoextractrelevantinformationaboutthecurrentstateoftheproduction,andtosupportthedecision-makingprocessesrelatedtothecontrolandoptimizationoftheoperatingtechnology.Thefocusisonthematerialandinformationflowthroughthewholeenterprise,wheretheOSSfollowstheprocessthroughtheorganizationinsteadoffocusingonseparatetasksoftheisolatedprocessunits.Themainfunctionoftheinformationintegrationmethodscannotonlybedataanalysisandminingbutalsothesupportofthehuman–systeminteraction.
5.Conclusions
Theimportanceofautomationtechnologycontinuestoincreaseintheprocessindustry.Thebarriersbetweeninformation,communicationandautomationtechnologyare,intheoperationalcontext,graduallydisappearing.Thelatesttechnologi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級思想品德課件
- 《電氣安全防范》課件
- 《證券基礎知識培訓》課件
- 單位管理制度合并選集【員工管理】十篇
- 《學業(yè)生涯規(guī)劃》課件
- 單位管理制度分享大全人員管理十篇
- 《服裝供應鏈》課件
- 單位管理制度范例選集人員管理篇
- 單位管理制度呈現(xiàn)大合集人事管理篇十篇
- 國開《機械制圖》形成性任務1-4
- 2024新冀教版英語初一上單詞默寫表
- ISO∕TR 56004-2019創(chuàng)新管理評估-指南(雷澤佳譯-2024)
- 2024年全國房地產(chǎn)估價師之估價原理與方法考試高頻題(附答案)
- 春節(jié)的習俗課件
- DL-T5142-2012火力發(fā)電廠除灰設計技術(shù)規(guī)程
- 2024年晉城職業(yè)技術(shù)學院單招職業(yè)傾向性測試題庫附答案
- 小學舞蹈課學情分析
- GB 31825-2024制漿造紙單位產(chǎn)品能源消耗限額
- 第15課 十月革命與蘇聯(lián)社會主義建設(教學設計)-【中職專用】《世界歷史》
- MOOC 天氣學-國防科技大學 中國大學慕課答案
- 小學教育教學現(xiàn)場會活動方案
評論
0/150
提交評論