Future-trends-in-process-automation畢業(yè)設計外文翻譯外文原文_第1頁
Future-trends-in-process-automation畢業(yè)設計外文翻譯外文原文_第2頁
Future-trends-in-process-automation畢業(yè)設計外文翻譯外文原文_第3頁
Future-trends-in-process-automation畢業(yè)設計外文翻譯外文原文_第4頁
Future-trends-in-process-automation畢業(yè)設計外文翻譯外文原文_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

PAGE

PAGE

23

AnnualReviewsinControl31(2007)211一20

Futuretrendsinprocessautomation

AuthorVitae

HelsinkiUniversityofTechnology,LaboratoryofProcessControlandAutomation,Kemistintie1,FI-02150,Espoo,Finland

Received27April2007

Accepted29August2007

Availableonline29October2007

Abstract

Theimportanceofautomationintheprocessindustrieshasincreaseddramaticallyinrecentyears.Inthehighlyindustrializedcountries,processautomationservestoenhanceproductquality,masterthewholerangeofproducts,improveprocesssafetyandplantavailability,efficientlyutilizeresourcesandloweremissions.Intherapidlydevelopingcountries,massproductionisthemainmotivationforapplyingprocessautomation.Thegreatestdemandforprocessautomationisinthechemicalindustry,powergeneratingindustry,andpetrochemicalindustry;thefastestgrowingdemandforhardware,standardsoftwareandservicesofprocessautomationisinthepharmaceuticalindustry.

Theimportanceofautomationtechnologycontinuestoincreaseintheprocessindustries.Thetraditionalbarriersbetweeninformation,communicationandautomationtechnologyare,intheoperationalcontext,graduallydisappearing.Thelatesttechnologies,includingwirelessnetworks,fieldbussystemsandassetmanagementsystems,boosttheefficiencyofprocesssystems.Newapplicationfieldslikebiotechnologyandmicrotechnologyposechallengesforfuturetheoreticalworkinthemodeling,analysisanddesignofcontrolsystems.Inthispapertheindustrytrendsthatareshapingcurrentautomationrequirements,aswellasthefuturetrendsinprocessautomation,arepresentedanddiscussed.

Keywords

Processautomation;

Futuretrends

1.Introduction

Thestartingpointsinassessingthefutureneedsforautomationare,ontheonehand,globaldevelopmentandeconomictrends,and,ontheother,thewayinwhichtheyarereflectedinthedevelopmentofsocietyandtheeconomy.Globalriskmanagementwillattainevergreaterimportanceinthefuture.Inparticular,bettercontrolandanticipationisneededinordertocontaintherisksrelatedtotheeconomy,environment,energyandinfrastructure.Facedwithclimatechangeandagrowingscarcityofrawmaterials,theworldneedstofindanddevelopnewenvironmentalandenergysolutions.Theworld'swatersupplyisalsoinneedofdevelopment.Internationalcompetitionandglobalbusinessenvironmentsreacheverywhere.Businessoperationsandcapitalmarketsaredynamic;theyseekenvironmentsthatofferthebestopportunitiesforsuccessinopencompetition.Inadditiontobusinessandproduction,alsoR&Dseeksthebestpossibleoperationalenvironments.Economic,organizationalandtechnologicaltrendswillcausesignificantchangesinautomationtechnologyduringthenextfewyears.

Bydevelopingtechnologies,itispossibletofindsolutionstothebasicneedsofsocietyandtheindustry.Thedevelopmentoftechnologyhelpstomaintainallofthecurrentcompetitiveadvantagesandtocreatenewonesinmanynewfields,thusfurtherimprovingprosperityandwell-being.Thedevelopmentofhightechnologyapplicationsfurtherbooststheintroductionofnewcooperationmodels:networkingamongbusinesscompanies,universitiesandresearchinstitutes,aswellasdecision-makersinthepublicsector.Atrans-disciplinaryapproache.g.inmaterialsdevelopmentrequiresexpertiseinphysics,chemistry,biomaterials,electronics,communications,programmingandautomation.

Globalizationalongbringswithitsocialchallengesandproblemsintheinteractionbetweendifferentpopulationgroupsandcultures.Thegrowthofmulticulturalismrequiresnewmanagementpractices,knowledgeofforeigncultures,andtheabilitytosupportandtakeadvantageoftheexistenceofminoritiesanddifference.Themanagementanddevelopmentofskillsandcompetencesinadecentralizedorganizationisbecomingincreasinglyimportant.

Theimportanceofautomationintheprocessindustryhasincreaseddramaticallyinrecentyears.Ithasbecomeaforceintheentirechemical,oil,gasandbiotechnologyindustries.Innovativeinstrumentationsystemsnowcontrolcomplexprocesses,ensuringprocessreliabilityandsafety,andprovideabasisforadvancedmaintenancestrategies.Incessantcostpressuresinthechemicalandbioindustriesleavenoalternativetoimprovedproductivity.Companiesneedtotakeaholisticapproachtoquality,costandtimeissues,andautomationengineeringwillplayacentralrole.Processcontrolensuresthattheplantassetscontinuouslyoperatepredictablywithinthemostprofitablerange,leadingtoagreateroutputofconsistentproducts,reliability,yieldandqualityusinglessenergy.Thistechnologywillhelpincreaseproductivity,improvequalityandacceleratesystemmodificationandretrofittingactivitydesignedtoincreaseflexibility.

Inthispapertheindustrytrendsthatareshapingcurrentautomationrequirements,aswellasthefuturetrendsinprocessautomation,arepresentedanddiscussed.Thepaperisstructuredasfollows:InSection2developmentoftheautomationmarketfortheprocessindustriesupuntil2010ispresented:marketdevelopmentsbyindustries,regionsandproductandservices.InSection3futureautomationtechnologytrends,liketheintegrationofproductionandbusinessoperationsandindustrialcommunicationtechnologies,arediscussed.Thepaperendswithrecentaccomplishmentsandfutureapplicationtrendsinprocessautomation.

2.Developmentoftheautomationmarketfortheprocessindustriesupuntil2010

2.1.Marketdevelopmentsbyindustries

AccordingtothereportbyIntechnoConsulting(Basel,Switzerland),theworldmarketforprocessautomationwillgrowatanaverageannualrateof5.1%between2005and2010toreach94.2billion$in2010.Thegreatestdemandforprocessautomationisinthechemicalindustry,powergeneratingindustry,andpetrochemicalindustry;thefastestgrowingdemandforhardware,standardsoftwareandservicesofprocessautomationisinthepharmaceuticalindustry.Theshareofhardwareisexpectedtocontinuetoshrink.Figure1showsthefutureworldmarketdevelopmentforprocessautomationinindividualapplicationsectors.

Fig.1.Developmentoftheworldmarketforprocessautomationupuntil2010—segmentationbyindustries

2.2.Marketdevelopmentbyregions

NorthAmericaistheleadingmarketforprocessautomation.Asia-PacificandEasternEuropearewinningmarketsharesfromWesternEuropeandNorthAmerica.ChinaisagrowingengineforautomationinAsia,inspiteofitslowerlevelsofplantautomation.India,too,isgainingmarketsharesworldwide.Inthehighlyindustrializedcountriesprocessautomationservestoenhanceproductquality,masterthewholerangeofproducts,improveprocesssafetyandplantavailability,efficientlyutilizeresourcesandloweremissions.Intherapidlydevelopingcountries,masteringmassproductionisthemainmotivationforapplyingprocessautomation.Qualityandenvironmentalaspectsare,however,gainingimportanceaswell.

2.2.1.Marketdevelopmentbyproductandservices

About39.3%oftheautomationhardwareboughtin2000werefortheprocesscontrollevel,and60.7%forthefieldlevel,includingallsensors,measurementequipment,andactuatorsintegratedinthevariousprocesstechnologicalmachines.By2010,theshareofcontrollevelhardwareoutofthetotalhardwarewillshrinkto35.8%worldwide.Intelligenceismovingtofieldlevelandthecontrollevelproductsandthesystemsarebecomingcheaper—theyareincreasinglybecomingcommodities.ParticularlystronggrowthwillbeseeninfieldbuscommunicationandEthernet/TCP-IPcomponents.Theformerisexpectedtogrowatarateof8.2%/year,andthatofthelattershouldbearound17%.

Theshareofexternalengineeringdemandwillkeepincreasingworldwide.Itisexpectedtorisefrom13.9%in2000to15.5%in2010.Engineeringexpendituresareexpectedtofurtherincrease,especiallyinthoseindustrieswithprototypeplants.Thetrendtowardsrationalizationandplantoptimization,accompaniedbyincreasedintegrationofautomationsystemswiththeinformationsystemsoftheproductionsiteandtheenterpriselevel,willfurtheraddtotheengineeringshareoutofthetotalplantprojectcosts.

3.Futuretechnologytrendsinautomation

3.1.Currentstatusoftheindustrialcommunicationtechnologies

Evolutionofcommunicationtechnologieshashadastronginfluenceonchangesinthestructureofindustrialautomationsystems.Upuntilnow,communicationsupportinplantautomationsystemshasbeendefinedaccordingtothecomputerintegratedmanufacturing(CIM)concept.Inthishierarchicalstructure,differentlevelsoffunctionalityareidentifiedinsuchawaythateachdeviceisdesignedforaspecifictask,andspecificnetworksareusedtointerconnectdevicesatthesamelevel,i.e.thoserunningthesametask.

However,thedeviceshaverecentlystartedtoincludemorethanonefunction,ormodule,whichincreasestheintelligenceleveloftheequipmentautomation.Deviceslikesensorsthathavetraditionallybeenusedformeasurementnowhavetosupporte.g.maintenanceormonitoringtasks.Thismeansthatthetraditionalhierarchicalstructurehastobereplacedbyadistributedcommunicationarchitecture.Nevertheless,thehierarchicalstructurestillexists–andthisisalsoadvisable–inmostoftheprocesscontrolstrategies.

Abriefsurveyofthemostimportantindustrial,low-layerprotocols(referringtotheISOmodel)isgiveninthefollowing.Inaddition,somecurrentlyessentialoremerginghigh(ISOmodel)layerdataspecificationsarealsodescribed.

3.1.1.Low-layercommunicationprotocols

Themostwidelyavailableindustrialnetworksatthepresenttimecanbeclassifiedintothreemaincategories:traditionalfieldbusses,Ethernet-basednetworksandwirelessnetworks.

TheworldwideleaderswithintheautomationdomainwithrespecttothenumberofinstalledFieldbusnodesareheldbyPROFIBUS(about14millionnodes)andInterbus(about7millionnodes).AgoodcommercialpositionisalsoheldbyFoundationFieldbus.Fieldbustechnologyhasreachedastablephasewithinindustrialautomation,andfulfillsthecurrenttechnicalrequirementsoflocalindustrialcommunicationsatthefieldlevelofanenterprise.

HARTandFoundationFieldbushaveopenedthedoortofieldintelligence.Instrumentsarenotonlysmarterabouttheprocessvariablestheymonitorandmanage,buttheyarealsomoreeffectiveatdiagnosingtheirownhealth.Thenextstageistowidenthisdiagnosticcapabilitytotheprocesssurroundingtheinstrument.Asthistrendcontinues,wewillbenefitfrompredictiveintelligence.Wewillknowmoreaboutthehealthoftheprocess,whichwillenableearlierdetectionofpotentialproblemsandprofit-draininginefficiencies.Wewillmovefromabnormalsituationmanagementtoabnormalsituationprevention.

Theincreaseddatatransferneedshavegraduallyfavouredtheadoptionofthecurrentlypopularofficenetworktechnology–Ethernet-basednetworks–intoindustrialenvironments.Severalorganizations(e.g.IAONA(IndustrialAutomationNetworkingAlliance))arepromotingtheuseofEthernetinindustrialautomation.Intheseapplications,thefieldbusstandardsalsoincludeEthernet-basednetworks,whichimplementtheEthernetprotocolinlowlayers.Themaindevelopmentareaisthereal-timerequirementsofthesenetworks.Currently,theworkinggroupIEC(InternationalElectrotechnicalCommission)WG11isrefiningtheRTErequirements.TheEthernet-basedindustrialnetworksincludedintheIEC61784standardare:Ethernet/IP,Profinet,Interbus,Vnet/IP,TCnet,EtherCAT,Powerlink,ModbusTCPandSercosIII.

InthesamewayasforEthernet,thewirelessarchitectureshavealsostartedtobeadoptedforindustrialuse.Atthepresenttimetherearenoestablishedandwidelyacceptedwirelessfieldbusses.However,supportfortheWirelessLocalAreaNetwork(WLAN)usingofficestandardizedIEEE802.11(

IEEE,1999

)isbecomingmoreandmoreestablished.AnotherinterestingdevelopmentareadealswiththeWirelessPersonalAreaNetwork(WPAN)technologies,includingBluetoothnetworkIEEE802.15.1/BT(

Haarsten,2000

)andthenetworkcurrentlyunderdevelopmentIEEE802.15.4/ZigBee(

IEEE,2003

).

Wirelesscommunicationhasalottoofferintheprocessindustry.Thetechnologyhasattractivefeaturesasitreducestheneedforcomplicated,expensivecablingatlargechemicalplants.Maintenancepersonnelontheproductionfloorcanremainincontactwiththecontrolcentre.Isolatedinstrumentation,forexamplepumpstationslocatedatremotesitesinthemountains,canbeintegratedintotheautomationstrategy.Wirelesstechnologyalsoofferstheadvantageofflexibility.Easeofuse,visualization,parametrization,anddiagnosticsthroughremotelinksareimportantconsiderations.

3.1.2.High-layerdataspecifications

Thecommunicationpartofanautomationdevicemighthavetoexchangedifferentkindsofdatalikeprocessmeasurements,controls,diagnosis,monitoring,historicaldata,etc.Inordertomanagethesedifferenttypesofdata,thecommunicationstackdefineshighlayerswhichcontributetotheintegrationoftheinformationsourcesandtothespecificationoftheproductdataandsafetyandsecuritydata.

TheinformationstandardsforprocessoperationandmaintenancearedrivenbyOpenO&MInitiativejointworkinggroups,mainlyrepresentingthreeindustrialorganizations:MIMOSA(fortheassetmanagementrelatedinformationstandards),theOPCFoundation(fordatatransportstandards)andISA'sSP95(forEnterprise-ControlSystemIntegrationStandardsCommittee).Oneofthemoststronglyestablishedstandards,theOPC,alsoenablestheuseofstateofthearttechnologiessuchaswebservices,theabilitytoprovidesecuredataexchange,andtheuseofencapsulateddatawitheXtensibleMarkupLanguage(XML).Ontheotherhand,thetraditionalfieldbusses(likeProfibusorFoundationFieldbus)havedefinedtheFDT/DTMconceptformanufacturer-independentintegrationoffielddevices.

3.2.Integrationofproductionandbusinessoperations

Plantsinthedifferentprocessindustryfieldsmustbeseenasproductionsystems:theirelementsaretheprocess(materialtransformation),inboundlogistics(materialtransport),theplant(physicalshell),automation(automaticoperation)andorganization(manualoperation,supervision,management).Operationisacollaborativeprocessofthisproductionsystem.Optimizationmeansthebestallocationoffunctionstothesecomponentsoftheproductionsystem.Thisintegratedapproachisincreasinglybeingexpandedtoproductionnetworksrepresentingcompletevalue-creatingproductionchains.Suppliersandcustomersareoftenincludedinthisapproach.

Virtuallyseamlesshorizontalandverticalintegrationofinformation,communicationsandautomationtechnologythroughoutthewholeorganizationisthusneededinordertoaddressthecomplexityoftoday'sprocesses.Thebuzzwordintheindustryisseamlesscommunications.ManufacturingExecutionSystems(MES),whicharenormallypositionedbetweentheEnterpriseResourcePlanning(ERP)andcontrolsystemlevels,canbeusedtooptimizeabusinessprocessontheshopfloor,improveproductquality,increaseprocessreliabilityandreducecomplianceandvalidationefforts.Thewell-knownproductioncontrol(MES)systemsintheprocessindustriesincludeABBindustrialITproductionPlanning,HoneywellExperionPKS-Optivision,MetsoDNAMES,TietoenatorTIPSandSiemensSimaticIT-Systems.ThemainmodulesoftheERPsystemsareMasterProductionSchedule,MaterialRequirementsPlanning,LogisticsandCustomerServiceManagement.ThemarketleaderoftheERPsystemsistheGermanSAPAG.i2Technolgies,andASPAGAPOsystemsarecorrespondinglythemostcommonAPSsystemsonthemarketforsupplychainmanagement.Plantoptimization,accompaniedbyincreasedintegrationofautomationsystemswiththeinformationsystemsoftheproductionsiteandtheenterpriselevel,isjustifiablealsoexpectedtobethemainobjectiveoftheprocessautomationintheseenterprisesinthenearfuture.

4.Recentaccomplishmentsandfutureapplicationtrendsinprocessautomation

4.1.ProcesscontrolandMPC

Modelpredictivecontrolhasbecomeastandardmultivariablecontrolsolutioninthecontinuousprocessindustry,andnowcoversover90%ofindustrialimplementationsofmultivariablecontrol.Onereasonforitssuccessisitsabilitytohandlemultivariablesystemssubjecttoinputandoutputconstraints.

ThefirstdescriptionofMPCcontrolapplicationwaspresentedbyRichalet,andthedevelopedsoftwarewascalledIDCOM.Thedynamicmatrixcontrol(DMC)algorithmalsorepresentedthefirstgenerationofMPCtechnologyandwasdevelopedbyShellOilengineers.

Asuccessfulindustrialcontrollerfortheprocessindustriesmustmaintainthesystemascloseaspossibletotheconstraints.ThesecondgenerationMPCalgorithm,likeQDMC,providedasystematicwaytoimplementtheseinputandoutputconstraints,buttherewasnoclearwaytohandleinfeasiblesolutions.ThethirdgenerationMPCalgorithmsdistinguishedbetweenseverallevelsofconstraints(hard,soft,ranked),providedamechanismtorecoverfromaninfeasiblesolution,addressedtheissuesresultingfromacontrolstructurethatchangesinreal-time,providedarichersetoffeedbackoptions,andallowedforawiderrangeofprocessdynamics(stable,integratingandunstable)andcontrollerspecifications.TheincreasedcompetitionandmergersofseveralMPCvendorshaveledtothetwomainfourthgenerationMPCproducts:RMPCTofferedbyHoneywell,andDMC-plusofferedbyAspenTechnologywithfeaturessuchasmultipleoptimizationlevelstoaddressprioritizedcontrolobjectives,additionalflexibilityinthesteady-statetargetoptimizationincludingQPandeconomicobjectives,directconsiderationofmodeluncertainty(robustcontroldesign),andimprovedidentificationtechnologybasedonpredictionerrormethodsandsub-spacemethods.

ThousandsofMPCapplicationshavebeenreportedinawidevarietyofapplicationareas.Mostofthemhavebeeninrefining,butasignificantnumberofapplicationscanalsobefoundinthepetrochemicalandchemicalsectors.Significantgrowthareasincludethepulpandpaperandfoodprocessingindustries.ThefirstmultivariableMPCtechnologytocovertheentirepapermakinglinehasrecentlybeenpublished.ThelargestnumberofnonlinearMPCapplicationsencompasschemicals,polymersandairandgasprocessing,ThesizeandscopeofNMPCapplicationsaretypicallymuchsmallerthanthoseoflinearMPCapplications.Majordevelopmentsintheprocesscontrolcommunityingeneralaimingatcontributionstosystemsandcontroltheoryareexpected,e.g.innonlinearoptimalcontrol,combinedstateandparameterestimationfornonlinearsystems,robustnessanalysisandrobustsynthesismethodsfornonlinearsystems,spatialdecomposition,decentralizationandhorizontalcoordinationoflarge-scalenonlinearnetwork-likeprocessesandhybriddiscrete-continuouscontroltheoryemphasizingsystemswithequallycomplexdiscreteaswellascontinuousparts.Forthelatestreviewonfuturetrendsinprocesscontrolsee(Dochain.2006).

4.2.ApplicationsofAImethods

MostoftheapplicationsoftheAImethodsintheprocessindustrieshavebeendesignedforunitprocessesinthebeginningoftheproductionchain,especiallyinpulping,mineralandmetalprocessing.Atypicalfeatureoftheseprocessesisthedifficultiesinvolvedinconstructingdetailedmechanisticmodels.Increasinginternationalcompetitionisforcingtheprocessindustrytobemoreefficientandtoemphasizetheimportanceofthehighqualityoftheendproduct.ThemostsuccessfulAIapplicationscanbefoundintheareaofqualitycontroloftheendproducts,whereasmallimprovementincontrolcangiveaconsiderablecompetitiveedgetotheenterprisecomparedtoitscompetitors.

Theimportanceofartificialintelligencetechniquesinreal-timeprocesscontrolisemphasizedinmanyofthepublishedarticles,andtheMMprocessesespeciallyarereportedtobenefitfromtheapplicationofAItechniques.

4.3.Processmonitoringandfaultdiagnosis

Monitoringthequalityoftheproductonlineandpredicting/preventingprocessdisturbancesarethekeyissuesinproducinghigherqualityproducts,optimizingtheproductionchain,andtherebyimprovingtheefficiency.Operationalsafetyofprocessesisofimportanceandthereforeshouldbethefirstobjectiveofprocesscontrol.Problemscausedbyoperationalfaultsrangefromincreasedoperationalcoststoforcedshutdownofprocesses.Theincreasedcomplexityandthedegreeofintegrationofmodernchemicalplantsmeansthatthepotentialeconomiclossisgreaterandthediagnosisoffaultlocationsmoredifficult.ItisestimatedthatinadequatemanagementofabnormalprocesssituationscausesannuallossesofUS$20billioninthepetrochemicalindustryintheUSA.Consequently,managingdisturbancesisseenasthenextchallengeindevelopingandimplementingnewcontrolsystems.

Venkatasubramanianpublishedareviewofmonitoringmethods,especiallythoseappliedinthefieldofchemicalprocesses.Theyclassifiedthemethodsaccordingtotheformofprocessknowledgeused.Onecategoryisbasedonprocessmodels,andincludesbothqualitativecausalmodelsandquantitativemethods.Theothercategoryisbasedonprocesshistory,andincludesbothqualitative(e.g.rule-based)andquantitativemethods(neuralnetworksandmultivariatestatisticalmethods).Alargenumberofsuccessfulapplicationshavebeenreviewed,e.g.byKomulainen.

4.4.Thenewextendedroleofoperatorsandoperator-supportsystems

Inrecentyearstheprocessindustryhasexplicitlydevelopedandimplementednewautomationandinformationtechnologiesinordertoremaincompetitive.Thishasledtoasituationwheremassiveamountsofmeasurementdataarenowavailable.Atthesametime,thetechnologyhasadvancedandthenumberofoperatorsatplantshasdecreased,thusmakingtheirworkmoredemandingwithmoreresponsibilities.Newchallengesintheoperator'sworkarethemanagementofcriticalsituationsanddecisionmakinginarangeofproblemsituations.Incriticalsituations,thedecisionsmustbemadequicklyandthereforealltherelevantinformationmustbereadilyandeasilyaccessible.

Astudytoanalysethefeaturesanduseoftheoperator'ssupportsystemsattwoFinnishpapermillshasrecentlybeencarriedout.Automationsystemsattheplantincludeavarietyofsolutionsprovidedbydifferentvendorsandwhichhadbeeninuseforverydifferentperiodsoftime.Theproductionlineshavethefollowingprocesscontrolandinformationmanagementsystems:processcontrol,machinecontrol,qualitycontrol,webinspection,processanalysis,productionplanning,andconditionandrunnabilitymonitoringsystems.Onehundredoperatorswereinterviewed.Themostcriticalandmostwidelyusedsystemswereprocesscontrol,qualitycontrolandmonitoring,aswellasproductionplanningsystems.Accordingtothestudy,only30–40%oftheexistingoperator-supportsystemscurrentlyinstalledatproductionsiteswereactuallyusedduetotheusabilityproblemsandoperators’poorknowledgeofthesystems.Themainreasonsforinfrequentuseofprocessoperationsupportsystemsarepresentedin.

Mostoftheinformationaffectingthedecision-makingprocessduringthecriticalsituationsissocalledtacitknowledge.Ensuringthatthistacitknowledgeisretainedaslargegroupsofolderoperatorsretire,especiallyinEurope,willbeanadditionalchallengefortheprocessindustry.Inthefuture,theefficientmanagementofknowledgesupportingthedecisionmakingwillthusbecomemoreandmoreimportant.Onecleartrendinthedevelopmentofprocesscontrolsystemsistoincludefeaturesforknowledgeandinformationmanagement.Theknowledgeandperformancesupportsystemswillbeintegratedasapartofprocesscontrolsystems,makingitanoptimalsolutiontosupportoperationsinthewholeproductionline.

Thestudyofinteractionsbetweenhumanandmachinesisanimportantaspectintheadoptionofcontroltechnologies,andinvolvesbothtechnicalissuesandsocialimplications.Humanmachinestudiesconsideralltheconditionswherehumansuse,controlorsupervisetools,machinesortechnologicalsystems.Itfostersanalysis,design,modelingandevaluationofhumanmachinesystems(HMS),whichincludedecision-makingandcognitiveprocesses,modelingofhumanperformance,realandvirtualenvironments,designmethodology,taskallocation-sharingandjobdesign,intelligentinterfaces,humanoperatorsupport,workorganization,andselectionandtrainingcriteria.OverthelastfewdecadestherehasbeenashiftfromthemorehardwareorientedHMStopicstothemoresoftwareandsystemorientedtopics.

Informationisaverypowerfulassetthatcanprovidesignificantbenefitsandacompetitiveadvantagetoanyorganization,includingcomplexproductiontechnologies.Inthecaseofcomplexprocessesthedesignofanintegratedinformationsystemisextremelyimportant.Thereisalsoacleartrendtousetheso-calleddatawarehousingmethodsbywhichthedatacanbeusedforquery,reportinganddataanalysistoextractrelevantinformationaboutthecurrentstateoftheproduction,andtosupportthedecision-makingprocessesrelatedtothecontrolandoptimizationoftheoperatingtechnology.Thefocusisonthematerialandinformationflowthroughthewholeenterprise,wheretheOSSfollowstheprocessthroughtheorganizationinsteadoffocusingonseparatetasksoftheisolatedprocessunits.Themainfunctionoftheinformationintegrationmethodscannotonlybedataanalysisandminingbutalsothesupportofthehuman–systeminteraction.

5.Conclusions

Theimportanceofautomationtechnologycontinuestoincreaseintheprocessindustry.Thebarriersbetweeninformation,communicationandautomationtechnologyare,intheoperationalcontext,graduallydisappearing.Thelatesttechnologi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論