版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第八年級數(shù)學(xué)課堂教案范文5篇
八年級數(shù)學(xué)課堂教案范文1
一、課堂導(dǎo)入
回顧平行四邊的性質(zhì)定理及定義
1.什么叫平行四邊形平行四邊形有什么性質(zhì)
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢除了定義還有什么方法平行四邊形性質(zhì)定理的逆命題是否成立
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強調(diào)兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設(shè)問:這個命題的前提和結(jié)論是什么
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書證明過程。
小結(jié):用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢
活動:課本探究內(nèi)容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形
設(shè)問:我們能否用推理的方法證明這個命題是正確的呢(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)
八年級數(shù)學(xué)課堂教案范文2
一、教學(xué)目標:
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量。
2、會求一組數(shù)據(jù)的極差。
二、重點、難點和難點的突破方法
1、重點:會求一組數(shù)據(jù)的極差。
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20__年2月下旬和20__年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢
從表中你能得到哪些信息
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20__年和20__年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢
根據(jù)兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區(qū)別嗎說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習(xí)題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)課堂教案范文3
一、學(xué)習(xí)目標
1.使學(xué)生了解運用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式
二、重點難點
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學(xué)習(xí)方法:歸納、概括、總結(jié)。
三、合作學(xué)習(xí)
創(chuàng)設(shè)問題情境,引入新課
在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如_2—16
=(_)2—42
=(_+4)(_—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精講精練
例1、把下列各式分解因式:
(1)25—16_2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2_3—8_。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)(a2—1)。
五、課堂練習(xí)
教科書練習(xí)。
六、作業(yè)
1、教科書習(xí)題。
2、分解因式:_4—16_3—4_4_2—(y—z)2。
3、若_2—y2=30,_—y=—5求_+y。
八年級數(shù)學(xué)課堂教案范文4
教學(xué)目標:
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應(yīng)用;
2.進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識.
教學(xué)重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論.
教學(xué)難點
會辨析哪些問題應(yīng)用哪個結(jié)論.
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎
創(chuàng)設(shè)問題情景:由課前準備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷(用直角三角板檢驗)
這個三角形的三邊分別是多少(一份視為1)它們之間存在著怎樣的關(guān)系
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形(當滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數(shù)都滿足a2+b2=c2嗎
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).
⒋例1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎
隨堂練習(xí):
⒈下列幾組數(shù)能否作為直角三角形的三邊長說說你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
⒋習(xí)題1.3
課堂小結(jié):
⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
⒉滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù).
八年級數(shù)學(xué)課堂教案范文5
教學(xué)目標:
1、在現(xiàn)實情境中,了解全等形的概念及全等三角形的概念及其性質(zhì)
2、在具體情境中,會使用全等符號“≌”標注兩個全等三角形
3、會找出兩個全等三角形的對應(yīng)邊和對應(yīng)角
教學(xué)重點:全等三角形的概念及性質(zhì)
教學(xué)難點:找全等三角形對應(yīng)邊和對應(yīng)角
教學(xué)用具:幻燈、全等三角形、剪刀、學(xué)具袋
教學(xué)過程:
(一)、教學(xué)導(dǎo)入
1、問題:在平面內(nèi),我們學(xué)過哪幾種圖形的變換共同的性質(zhì)是什么今天我們在它的基礎(chǔ)上學(xué)習(xí)新的內(nèi)容。
(二)、新授
1、全等形及全等三角形的概念。
A、(幻燈)引出完全重合。
問題:同學(xué)們,你能舉出生活中完全重合的兩個圖形的例子嗎
讓學(xué)生討論,交流結(jié)果,充分肯定學(xué)生的思考與發(fā)現(xiàn),教師可列舉一些例子。
B、教師歸納
(1)、全等形:能夠完全重合的圖形。
(2)、全等三角形:能夠完全重合的兩個三角形。
2、會使用全等符號“≌”標注兩個全等三角形和找兩全等三角形的對應(yīng)邊和對應(yīng)角。
A、學(xué)生活動:每位同學(xué)用剪刀把準備好的全等三角形剪下來,意見和建議
進一步加深概念的理解。
B、教師活動:將剪好的兩個全等三角形貼在黑板上,標上頂點字母。
引出:(1)、△ABC全等于△A′B′C′,全等于用“≌”表示,讀作“全等于”,記作:△ABC△≌△A′B′C′。
(2)、對應(yīng)頂點:互相重合的頂點。
對應(yīng)邊:互相重合的邊。
對應(yīng)角:互相重合的角。
學(xué)生試結(jié)合圖,在ABC△≌△A′B′C′中找出對應(yīng)頂點、對應(yīng)邊和對應(yīng)角。
C、師生活動:將疊合的兩個三角形其中一塊沿任意直線作軸反射,擺出這兩個全等三角形不同位置的組合圖形,并指出對應(yīng)元素。
D、(幻燈2)出示習(xí)題,學(xué)生在練習(xí)本上完成,做完后與同學(xué)交流,教師查巡學(xué)生練習(xí)的情況,最后師生歸納找對應(yīng)角,找對應(yīng)邊的方法。
E、(幻燈3)歸納找對應(yīng)角、找對應(yīng)邊的方法。
3、全等三角形的性質(zhì)
A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上半年貴州黔南州獨山縣教育系統(tǒng)部分事業(yè)單位引進急需緊缺專業(yè)人才易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州遵義市務(wù)川縣事業(yè)單位面向三支一扶人員招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州省鳳岡縣鄉(xiāng)鎮(zhèn)事業(yè)單位招聘194人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州521事業(yè)單位聯(lián)考筆試(全?。┲攸c基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2025年上半年襄陽魚梁洲開發(fā)區(qū)招考易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年蚌埠仲裁委員會秘書處招考易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年上半年聊城市孔繁森同志紀念館講解員招考易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年消防設(shè)施設(shè)備拆除與重建服務(wù)合同3篇
- 二零二五年房地產(chǎn)投資合作項目稅務(wù)籌劃協(xié)議3篇
- 融創(chuàng)集團2025年度供應(yīng)商反賄賂合規(guī)合同2篇
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標準
- 物流無人機垂直起降場選址與建設(shè)規(guī)范
- 冷庫存儲合同協(xié)議書范本
- AQ/T 4131-2023 煙花爆竹重大危險源辨識(正式版)
- 武術(shù)體育運動文案范文
- 設(shè)計服務(wù)合同范本百度網(wǎng)盤
- 2024年市級??谱o士理論考核試題及答案
- 肺炎臨床路徑
- 供應(yīng)商供貨服務(wù)方案(2篇)
評論
0/150
提交評論