2022mRNA疫苗在感染性疾病的研究進展_第1頁
2022mRNA疫苗在感染性疾病的研究進展_第2頁
2022mRNA疫苗在感染性疾病的研究進展_第3頁
2022mRNA疫苗在感染性疾病的研究進展_第4頁
2022mRNA疫苗在感染性疾病的研究進展_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

mRNA疫苗在感染性疾病的研究進展前言以mRNA為基礎的治療代表了一個相對新穎和高效的藥物類別。最近發(fā)表的幾項研究強調了mRNA疫苗在治療不同類型的惡性腫瘤和傳染病方面的潛在療效,這些疾病中傳統(tǒng)的疫苗策略不能引起保護性免疫反應。傳染病疫苗是目前mRNA療法中最領先的應用。目前正在進行臨床前試驗和臨床使用的大多數(shù)mRNA疫苗都是以單次給藥的形式注射到皮膚、肌肉或皮下,在那里它們被免疫或非免疫細胞吸收并轉化為抗原,展示給T細胞和B細胞。們認為mRNA疫苗至少還需要5-6年才能獲得監(jiān)管部門的批準。但是,當2020年初COVID幾個月里,mRNA疫苗的研發(fā)、制造和部署都進入了飛速跨越的階段。SARS-CoV-2疫苗大多數(shù)SARS-CoV-2候選疫苗對病毒表面的棘突蛋白產生免疫反應。棘突蛋白與其宿主細胞表面的受體血管緊張素轉換酶2結合。然后,細胞的跨膜絲氨酸蛋白酶2將附著的棘突蛋白切開,該蛋白酶誘導構象變化,暴露棘突蛋白的融合肽并促進與細胞或內體膜的融合。通常,疫苗mRNA編碼的抗原要么是全長棘突蛋白,要么是棘突蛋白的受體結合域。截至2021年6月18日,185個CVID-19疫苗候選處于臨床前開發(fā)階段,另外102ABNT162b2疫苗獲得了FDA的緊急授權,成為第一個獲準用于人體的mRNA藥物。一ModernamRNA授權在美國使用。最終,它們是第一批在美國、英國、加拿大和其他幾個國家獲得授權的SARS-CoV-2疫苗。輝瑞和BioNTech共同開發(fā)了五種mRNA候選疫苗,它們編碼棘突蛋白抗原的變體。兩個主要候選藥物BNT162b1和BNT162b2使用AcuitasTherapeutics的可電離脂質ALC-0315和核苷修飾的mRNA,其中所有尿苷被N1甲基假尿苷取代,以增強mRNA翻譯。BNT162b1編碼三聚體分泌型棘突蛋白的受體結合域,而BNT162b2編碼全長SARS-CoV-2棘突糖蛋白,S2亞基中有兩個脯氨酸替換,將蛋白鎖定在融合前構象。在兩種疫苗的第一階段試驗中,都可誘導高滴度的中和抗體,并產生強烈的CD4+和CD8+反應,伴有輕度至中度不良反應。兩種候選疫苗耐受性良好且有效,但只有BNT162b2疫苗因其較輕的全身和局部不良反應而進入II/III期試驗。在第三階段試驗中,BNT162B2顯示了95%的整體預防和90~100%的療效。Moderna與國立衛(wèi)生研究院合作開發(fā)了mRNA-1273。該疫苗使用了可電離脂質SM-102制備LNP,該LNP封裝N1甲基假尿苷修飾的mRNA。該序列編碼SARS-CoV-2棘突蛋白,帶有兩個脯氨酸替換,賦予融合前構象。在1期臨床試驗中,mRNA-1273非常有效且耐受性良好。在涉及30420名志愿者的III期試驗中,兩支100μg劑量疫苗的預防率為94.1%,注射部位的局部疼痛是最常見的副作用。第二次給藥后,一半的志愿者報告了中度至重度系統(tǒng)性副作用(例如疲勞、肌肉疼痛、關節(jié)疼痛),這些副作用在48小時內消失。盡管輝瑞和Moderna公司生產的疫苗已證明具有良好的療效和安全性,但它們mRNA273可在4-8℃下儲存持續(xù)一個月,而BNT162b2則需要在-60℃條件下儲存。CureVac的候選疫苗CVnCoV在5℃下可穩(wěn)定儲存3個月。CVnCoV使用AcuitasTherapeutics(可能是ALC-0315)的可電離脂質和編碼具有兩個脯氨酸替代物的全長棘突蛋白的未修飾mRNA。在第一階段臨床試驗中,志愿者產生的中和抗體與CVID-19恢復期患者相似,耐受性良好。然而不幸的是,在包括4萬人的III期臨床試出現(xiàn)的SARS-CoV-2變異。CureVac與GSK合作,開發(fā)第二代候選藥物——CV2CoV,該藥物經過優(yōu)化,以增強相對于CVnCoV的翻譯和免疫原性。CV2CoV使用來自人類羥基類固醇17-β-脫氫酶4基因的5′UTR和來自人類蛋白酶體20S亞單位β3基因的3′UTR。在臨床前研究中,CV2CoV在體外顯示出比CVnCoV高1.8倍的蛋白表達,并在大鼠中誘導針另一種耐熱候選疫苗ARCoV由中國人民解放軍軍事科學院與Walvax生物技術公司合作開發(fā),可以在25℃穩(wěn)定一周。ARCoV編碼棘突蛋白的受體結合域。在臨床前研究中,在食蟹猴中可誘導高SARS-CoV-2特異性IgG抗體和強病毒中和滴度。盡管CVnCoV和ARCoV熱穩(wěn)定性背后的原因尚不清楚,但mRNA二級結構、較小的其它一些mRNA候選疫苗也正在研制中。LNP-nCoVsaRNA由倫敦帝國理工學劑量遞增方案進行I期臨床試驗評估(ISRCTN17072692),其使用了所有候選mRNA疫苗中最低的RNA劑量。另一種自擴增mRNA疫苗候選物ARCT-021(也稱為LUNAR-COV19)由Arcturus公司利用其專有的LUNAR脂質載體和自轉錄和復制RNA(STARR)平臺開流感病毒疫苗全世界每年約有29萬至65萬人死于流感病毒。目前的疫苗以促進病毒進入的病毒血凝素蛋白為靶標。傳統(tǒng)的流感疫苗是生長在雞蛋中的滅活流感病毒,生產時間長,純化困難。此外,病毒會在雞蛋中發(fā)生變異以獲得最佳生長,有時會使它們在人類中無效。因此,確實需要替代的抗原靶點和生產方法。體外轉錄的合成mRNAs可以滿足這一需求,并確保在出現(xiàn)全新流感毒株時快速生產疫苗。例如,2013年,基于LNP (DLinDMA)的自我擴增mRNA疫苗在中國H7N9爆發(fā)后8天內迅速研制成功,然而不幸的是,由于當時沒有用于mRNA制造的GMP設施,未能進行臨床試驗。也有人致力于研制一種不需要每年修改的通用流感疫苗。這種疫苗可以對幾種流感病毒株和亞型產生免疫力。在2012年首次展示的流感mRNA疫苗,三次皮內注射在小鼠中分別誘導針對H1N1和H5N1毒株的同源和異源免疫。值得注意的是,不易發(fā)生突變的血凝素保守柄區(qū)最近已成為一種新型通用疫苗靶標。還有另一項研究使用LNPs來遞送50ng劑量的mRNA,編碼三種保守的流感蛋白:神經氨酸酶、核蛋白和基質-2離子通道蛋白以及血凝素柄區(qū)。令人難以置信的是,這種微小的mRNA劑量產生了廣泛的保護性抗體。寨卡病毒疫苗寨卡病毒感染于1947年首次被發(fā)現(xiàn),感染寨卡病毒的患者通常無癥狀或出現(xiàn)發(fā)熱、皮疹和肌肉疼痛等輕微癥狀。然而,寨卡病毒在2015-2016年美洲流行期間成為全球健康危機,該病毒在懷孕期間導致嚴重胎兒神經畸形和胎兒死亡。膜和包膜蛋白 (prM-E)是針對寨卡病毒的mRNA疫苗常見的抗原選擇,因為針對prM-E的中和抗體可以防止病毒融合。Moderna與華盛頓大學醫(yī)學院合作,開發(fā)了一種改良的prM-EmRNA,其中包含E蛋白中的突變融合環(huán)形表位。兩個10μg劑量的mRNA可保護小鼠免受寨卡病毒攻擊,并減少登革熱增強抗體的產生。這些令人鼓舞的臨床前結果促進了I期試驗的進良好。此外,另一項研究使用被動免疫方法,利用基于角鯊烯的納米載體遞送編碼ZIKV中和抗體的mRNA。對于免疫系統(tǒng)受損而無法合成自身抗體的免疫缺陷患者來說,這是一種很有吸引力的方法。HIV病毒疫苗全球范圍內,艾滋病毒目前影響3800萬人,預計到2030年將影響多達4200萬人。盡管已進行了30年的研究,但尚未開發(fā)出有效的疫苗,這主要是因為HIV包膜蛋白具有顯著的抗原性多樣性以及隱藏關鍵包膜蛋白表位“聚糖屏障”。幾項臨床前研究的抗原對于有效地靶向HIV是非常關鍵的。呼吸道合胞病毒疫苗呼吸道合胞病毒是全球急性下呼吸道感染的主要原因。每年,估計有60000名5歲以下兒童死亡,超過14000名65歲以上的人死亡。目前的RSV候選疫苗主要針對高度保守的F蛋白。盡管一些候選者由于中和抗體滴度不足而未能通過臨床試驗,但對F蛋白構象的新發(fā)現(xiàn)表明,針對融合前構象接種疫苗可產生優(yōu)異的中和抗體反應。這一發(fā)現(xiàn)有望改進未來的疫苗設計。Moderna正在評估編碼融合前F蛋白的三種單劑量候選疫苗:mRNA-1172和1777誘導RSV中和抗體產生強烈的體液反應,CD4+T細胞對RSVF蛋白產生反應,mRNA77的翻譯和免疫原性。接種后1個月,mRNA-1345產生的中和抗體滴度約為mRNA-1777的八倍。最終,Moderna的目標是將mRNA-1345與其兒科人類偏肺病毒/副流感病毒3型(hMPV/PIV3)候選疫苗mRNA-1653整合,并用單一配方為兒童接種針對三種不同病原體的疫苗。埃博拉病毒疫苗埃博拉病毒(EBOV)于1976年首次被確定為導致埃博拉病爆發(fā)的病原體。這種病毒性出血熱在2014-2016年西非埃博拉疫情中奪走了11000多條生命。2019年,F(xiàn)DA批準了一種基于重組水泡性口炎病毒(VSV)的埃博拉疫苗(rVSV-EBOV)。盡rVSV-EBOV在預防埃博拉傳播方面的有效性為97.5%,但臨床試驗注意到一些安全問題(例如急性關節(jié)炎和皮疹)??笶BOV的mRNA疫苗可能比這種基于病毒的疫苗更安全,因為它們不會在體內復制。一種編碼EBOV糖蛋白的mRNA疫苗已在小鼠中證明了效力。該疫苗通過CD8+和CD4+T細胞誘導糖蛋白特異性IgG抗體和IFN-γ以及IL-2的強烈表達,可保護動物免受致命病毒的傷害??袢《疽呙缈袢∈且环N人畜共患病,以神經癥狀為特征,死亡率近100%。盡管已有疫苗獲批,但每年仍有5萬多人死于狂犬病,這突出表明需要更有效、更廉價的疫苗。為了滿足這一需求,CureVac利用其RNActive平臺,篩選出編碼狂犬病病毒糖蛋白的未經修飾的mRNA疫苗CV7201。在一項臨床前研究中,CV7201可誘導小鼠和豬的高中和抗體滴度,并誘發(fā)抗原特異性CD4+和CD8+T細胞反應。但是在I期臨床試驗中發(fā)現(xiàn),雖然給藥途徑不影響免疫反應,但給藥裝置只有皮內注射器產生短暫的體液免疫反應。這種弱的給藥效果以及高發(fā)生率的不良事件表明需要進一步優(yōu)化給藥平臺。隨后,CureVac使用AcuitasTherapeutics生產的專有LNP作為其新疫苗CV7202的載體。在一項臨床前研究中,CV7202誘導產生強抗體滴度和CD8+和CD4+T細胞反應。I期臨床試驗結果表明,兩個1μg劑量可產生高滴度中和抗體以及強適應性免疫反應,耐受性良好。瘧原蟲疫苗盡管開發(fā)中的絕大多數(shù)mRNA疫苗是為了防止病毒感染,但也有預防其他傳染病的努力。瘧疾是由單細胞真核寄生蟲引起的,其發(fā)病率和殺傷力位居榜首。每年,瘧疾折磨著全世界2億多人,奪走40多萬患者的生命。由于缺乏表面抗原和瘧原蟲的復雜生命周期,抗瘧疫苗的生產一直很困難。幸運的是,人體對瘧原蟲感染的自然免疫反應的研究已經確定了潛在的非表面抗原靶點。例如,瘧原蟲分泌的細胞因子巨噬細胞遷移抑制因子(PMIF)已被證明可阻止T細胞產生長期記憶。根據這一發(fā)現(xiàn),從基于角鯊烯的陽離子納米乳劑中制備了一種疫苗,該納米乳劑裝載有編碼PMIF的自擴增mRNA。兩個15μg劑量可改善輔助性T細胞的發(fā)育,并誘發(fā)抗瘧原蟲IgG抗體和記憶性T細胞反應。另一項關于瘧疾感染的機制研究發(fā)現(xiàn),惡性瘧原蟲富含谷氨酸蛋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論