廣西南寧二中、柳州高中2023年數(shù)學高二下期末預測試題含解析_第1頁
廣西南寧二中、柳州高中2023年數(shù)學高二下期末預測試題含解析_第2頁
廣西南寧二中、柳州高中2023年數(shù)學高二下期末預測試題含解析_第3頁
廣西南寧二中、柳州高中2023年數(shù)學高二下期末預測試題含解析_第4頁
廣西南寧二中、柳州高中2023年數(shù)學高二下期末預測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023高二下數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為兩條直線,為兩個平面,下列四個命題中,正確的命題是()A.若與所成的角相等,則B.若,,則C.若,則D.若,,則2.復數(shù)在平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知為虛數(shù)單位,,則復數(shù)的虛部為()A. B.1 C. D.4.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb5.“因為指數(shù)函數(shù)是增函數(shù)(大前提),而是指數(shù)函數(shù)(小前提),所以函數(shù)是增函數(shù)(結(jié)論)”,上面推理的錯誤在于A.大前提錯誤導致結(jié)論錯 B.小前提錯誤導致結(jié)論錯C.推理形式錯誤導致結(jié)論錯 D.大前提和小前提錯誤導致結(jié)論錯6.已知橢圓的左右焦點分別,,焦距為4,若以原點為圓心,為直徑的圓恰好與橢圓有兩個公共點,則此橢圓的方程為()A. B.C. D.7.已知是函數(shù)的零點,是函數(shù)的零點,且滿足,則實數(shù)的最小值是().A.-1 B. C. D.8.已知某一隨機變量ξ的概率分布列如圖所示,且E(ξ)=6.3,則a的值為()ξ4a9P0.50.1bA.5 B.6 C.7 D.89.若是離散型隨機變量,,,又已知,,則的值為()A. B. C.3 D.110.復數(shù),則=()A.0 B. C. D.11.設(shè)實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.12.橢圓短軸的一個端點和兩個焦點相連構(gòu)成一個三角形,若該三角形內(nèi)切圓的半徑為,則該橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在全運會期間,4名志愿者被安排參加三個不同比賽項目的接待服務工作,則每個項目至少有一人參加的安排方法有____________.14.已知不等式對于大于的正整數(shù)恒成立,則實數(shù)的取值范圍為_________.15.若向量,,且,則實數(shù)__________.16.已知某市社區(qū)35歲至45歲的居民有450人,46歲至55歲的居民有750人,56歲至65歲的居民有900人.為了解該社區(qū)35歲至65歲居民的身體健康狀況,社區(qū)負責人采用分層抽樣技術(shù)抽取若干人進行體檢調(diào)查,若從46歲至55歲的居民中隨機抽取了50人,試問這次抽樣調(diào)查抽取的人數(shù)是________人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某班從6名班干部中(其中男生4人,女生2人),任選3人參加學校的義務勞動.(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;(2)求男生甲或女生乙被選中的概率.18.(12分)已知橢圓:的離心率為,點,分別為橢圓的左右頂點,點在上,且面積的最大值為.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)為的左焦點,點在直線上,過作的垂線交橢圓于,兩點.證明:直線平分線段.19.(12分)已知函數(shù),曲線在處的切線方程為.(1)求實數(shù)的值;(2)求函數(shù)在的最值.20.(12分)如圖(1),等腰梯形,,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值.21.(12分)已知.(1)求證:恒成立;(2)試求的單調(diào)區(qū)間;(3)若,,且,其中,求證:恒成立.22.(10分)已知函數(shù).(Ⅰ)求不等式的解集;(Ⅱ)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

試題分析:A項中兩直線還可能相交或異面,錯誤;B項中兩直線還可能相交或異面,錯誤;C項兩平面還可能是相交平面,錯誤;故選D.2、B【解析】分析:先化簡復數(shù)z,再判斷其在平面內(nèi)對應的點在第幾象限.詳解:由題得,所以復數(shù)z在平面內(nèi)對應的點為,所以在平面內(nèi)對應的點在第二象限.故答案為B.點睛:(1)本題主要考查復數(shù)的計算和復數(shù)的幾何意義,意在考查學生對這些知識的掌握水平.(2)復數(shù)對應的點是(a,b),點(a,b)所在的象限就是復數(shù)對應的點所在的象限.復數(shù)和點(a,b)是一一對應的關(guān)系.3、A【解析】

給兩邊同乘以,化簡求出,然后可得到其虛部【詳解】解:因為,所以所以,所以虛部為故選:A【點睛】此題考查復數(shù)的運算和復數(shù)的有關(guān)概念,屬于基礎(chǔ)題4、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.5、A【解析】試題分析:大前提:指數(shù)函數(shù)是增函數(shù)錯誤,只有在時才是增函數(shù)考點:推理三段論6、A【解析】

已知,又以原點為圓心,為直徑的圓恰好與橢圓有兩個公共點,這兩個公共點只能是橢圓短軸的頂點,從而有,于是可得,從而得橢圓方程。【詳解】∵以原點為圓心,為直徑的圓恰好與橢圓有兩個公共點,∴這兩個公共點只能是橢圓短軸的頂點,∴,又即,∴,∴橢圓方程為。故選:A。【點睛】本題考查橢圓的標準方程,解題關(guān)鍵時確定的值,本題中注意橢圓的對稱軸,從而確定關(guān)系。7、A【解析】

先根據(jù)的單調(diào)性確定出最小值從而確定出的值,再由不等式即可得到的范圍,根據(jù)二次函數(shù)零點的分布求解出的取值范圍.【詳解】因為,所以當時,,當時,,所以在上遞減,在上遞增,所以,所以,又因為,所以,因為對應的,且有零點,(1)當時,或,所以,所以,所以,(2)當時,或,此時,所以,綜上可知:,所以.故選:A.【點睛】本題考查利用導數(shù)判斷函數(shù)的零點以及根據(jù)二次函數(shù)的零點分布求解參數(shù)范圍,屬于綜合性問題,難度較難.其中處理二次函數(shù)的零點分布問題,除了直接分析還可以采用畫圖象的方法進行輔助分析.8、C【解析】分析:先根據(jù)分布列概率和為1得到b的值,再根據(jù)E(X)=6.3得到a的值.詳解:根據(jù)分布列的性質(zhì)得0.5+0.1+b=1,所以b=0.4.因為E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3,所以a=7.故答案為C.點睛:(1)本題主要考查分布列的性質(zhì)和隨機變量的期望的計算,意在考查學生對這些知識的掌握水平.(2)分布列的兩個性質(zhì):①,;②.9、D【解析】分析:由期望公式和方差公式列出的關(guān)系式,然后變形求解.詳解:∵,∴隨機變量的值只能為,∴,解得或,∴.故選D.點睛:本題考查離散型隨機變量的期望與方差,解題關(guān)鍵是確定隨機變量只能取兩個值,從而再根據(jù)其期望與方差公式列出方程組,以便求解.10、C【解析】

根據(jù)復數(shù)的除法運算,先化簡復數(shù),再由復數(shù)模的計算公式,即可求出結(jié)果.【詳解】因為,所以.故選C【點睛】本題主要考查復數(shù)的除法,以及復數(shù)的模,熟記公式即可,屬于基礎(chǔ)題型.11、A【解析】分析:作出題中不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,再將目標函數(shù)z=|x|﹣y對應的直線進行平移,觀察直線在y軸上的截距變化,即可得出z的取值范圍.詳解:作出實數(shù)x,y滿足約束條件表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(﹣1,﹣2),B(0,),O(0,0).設(shè)z=F(x,y)=|x|﹣y,將直線l:z=|x|﹣y進行平移,觀察直線在y軸上的截距變化,當x≥0時,直線為圖形中的紅色線,可得當l經(jīng)過B與O點時,取得最值z∈[0,],當x<0時,直線是圖形中的藍色直線,經(jīng)過A或B時取得最值,z∈[﹣,3]綜上所述,z∈[﹣,3].故答案為:A.點睛:(1)本題主要考查線性規(guī)劃,意在考查學生對該知識的掌握水平和數(shù)形結(jié)合的思想方法,考查學生分類討論思想方法.(2)解答本題的關(guān)鍵是對x分x≥0和x<0討論,通過分類轉(zhuǎn)化成常見的線性規(guī)劃問題.12、C【解析】

利用等面積法得出、、的等式,可得出、的等量關(guān)系式,可求出橢圓的離心率.【詳解】由橢圓短軸的一個端點和兩個焦點所構(gòu)成的三角形面積為,該三角形的周長為,由題意可得,可得,得,因此,該橢圓的離心率為,故選:C.【點睛】本題考查橢圓離心率的計算,解題時要結(jié)合已知條件列出有關(guān)、、的齊次等式,通過化簡計算出離心率的值,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】

由題意結(jié)合排列組合公式整理計算即可求得最終結(jié)果.【詳解】每個項目至少有一人參加,則需要有一個項目2人參加,其余的兩個項目每個項目一人參加,結(jié)合排列組合公式可知,滿足題意的安排方法共有:種.【點睛】(1)解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組,注意各種分組類型中,不同分組方法的求法.14、【解析】

先求得的最小值,為此作差,確定的單調(diào)性,得最小,然后解不等式即可?!驹斀狻吭O(shè),,,所以,遞增,最小值;于是有,所以,所以,由且,所以,所以,又因為,所以.故答案為:?!军c睛】本題考查不等式恒成立問題,解題方法是轉(zhuǎn)化為求函數(shù)的最值,本題不等式左邊作為自然數(shù)的函數(shù),可以看作是數(shù)列的項,因此可用研究數(shù)列單調(diào)性的方法來研究其單調(diào)性,即作差,由差的正負確定數(shù)列的增減,從而確定最小值.15、.【解析】依題設(shè),,由∥得,,解得.16、【解析】根據(jù)題意可得抽樣比為則這次抽樣調(diào)查抽取的人數(shù)是即答案為140.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

試題分析:(1)根據(jù)題意,所選3人中女生人數(shù)的所有可能取值為0,1,2三種,,,,寫出分布列即可;(2)從6名班干部中任選3人共用種選法,若男生甲被選中,則有種,若女生乙被選中,則有種,男生甲被選中的時候包含女生乙被選中,女生乙被選中的時候也包含男生甲被選中的情況,所有男生甲或女生乙被選中的種數(shù)應為,設(shè)男生甲或女生乙被選中為事件A,則事件A的概率為.或者也可以求出男生甲和女生乙都不被選中的種數(shù)為種,概率為,根據(jù)對立事件的概率,可知男生甲或女生乙被選中的概率為.試題解析:(1)ξ的所有可能取值為0,1,2依題意得ξ

0

1

2

P

所以ξ的分布列為(2)設(shè)“甲、乙都不被選中”為事件C則P(C)=所求概率為1-=考點:1.離散型隨機變量分布列;2.隨機事件的概率.18、(Ⅰ);(Ⅱ)證明見解析.【解析】分析:(1)由題意可知,,結(jié)合,即可求得橢圓方程.(2)由題意設(shè),,,線段的中點.則,①易知平分線段;②,,因點,在橢圓上,根據(jù)點差法整理得,所以,直線平分線段.詳解:解:(Ⅰ)由橢圓的性質(zhì)知當點位于短軸頂點時面積最大.∴有,解得,故橢圓的方程為.(Ⅱ)證明:設(shè),,,線段的中點.則,,由(Ⅰ)可得,則直線的斜率為.當時,直線的斜率不存在,由橢圓性質(zhì)易知平分線段,當時,直線的斜率.∵點,在橢圓上,,整理得:,又,,∴,直線的斜率為,∵直線的斜率為,∴直線平分線段.點睛:題目問題涉及到弦的斜率與弦的中點在一起時,就要想到“點差法”.(1)設(shè)點,其中點坐標為,則(2)把代入曲線的方程,并作差,利用平方差公式對結(jié)果因式分解,得到與兩點斜率和中點坐標有關(guān)的方程,再根據(jù)具體題干內(nèi)容進行分析.(3)點差法常見題型有:求中點弦方程、求(過定點、平行弦)弦中點軌跡、垂直平分線、定值問題。19、(1);(2),【解析】

(1),可得到,即可求出的值;(2)由可判斷的單調(diào)性,從而可求出函數(shù)在的最值.【詳解】(1),則,.(2)的定義域為,,令,則,當時,,單調(diào)遞減;當時,,單調(diào)遞增,,∵,,且,∴.【點睛】本題考查了導數(shù)的幾何意義,考查了函數(shù)的單調(diào)性的應用,考查了學生的計算能力,屬于基礎(chǔ)題.20、(1)詳見解析;(2).【解析】

(1)推導出,,從而面,由此能證明平面平面;(2)過點作于,過點作的平行線交于點,則面,以為原點,以,,所在直線分別為軸、軸、軸建立空間直角坐標系,利用向量法能求出平面與平面所成銳二面角的余弦值.【詳解】(1)證明:四邊形為等腰梯形,,,,,是的兩個三等分點,四邊形是正方形,,,且,面,又平面,平面平面;(2)過點作于點,過點作的平行線交于點,則面,以為坐標原點,以,,所在直線分別為軸、軸、軸建立空間直角坐標系,如圖所示:則,,,,,,,,設(shè)平面的法向量,則,取,得,設(shè)平面的法向量,則,∴,取,得:,設(shè)平面與平面所成銳二面角為,則.平面與平面所成銳二面角的余弦值為.【點睛】本題考查平面與平面垂直的判定以及二面角平面角的求法,屬于常考題.21、(1)證明見解析;(2)單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間。(3)證明見解析【解析】

(1)構(gòu)造函數(shù),利用導數(shù)求出函數(shù)的最小值,利用來證明所證不等式成立;(2)先解等式可得出函數(shù)的定義域,求出該函數(shù)的導數(shù),利用(1)中的結(jié)論得出在定義域內(nèi)恒成立,由此可得出函數(shù)的單調(diào)區(qū)間;(3)證法一:利用分析法得出要證,即證,利用數(shù)學歸納法和單調(diào)性證明出對任意的恒成立,再利用(1)中的不等式即可得證;證法二:利用數(shù)學歸納

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論