福建省長樂中學(xué)2022-2023學(xué)年數(shù)學(xué)高二第二學(xué)期期末考試試題含解析_第1頁
福建省長樂中學(xué)2022-2023學(xué)年數(shù)學(xué)高二第二學(xué)期期末考試試題含解析_第2頁
福建省長樂中學(xué)2022-2023學(xué)年數(shù)學(xué)高二第二學(xué)期期末考試試題含解析_第3頁
福建省長樂中學(xué)2022-2023學(xué)年數(shù)學(xué)高二第二學(xué)期期末考試試題含解析_第4頁
福建省長樂中學(xué)2022-2023學(xué)年數(shù)學(xué)高二第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.2.已知點P的極坐標(biāo)是,則過點P且平行極軸的直線方程是A. B. C. D.3.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則()A.有極小值,但無極大值 B.既有極小值,也有極大值C.有極大值,但無極小值 D.既無極小值,也無極大值4.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機抽樣 B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣 D.簡單隨機抽樣,系統(tǒng)抽樣5.從甲、乙等10個同學(xué)中挑選4名參加某項公益活動,要求甲、乙中至少有1人參加,則不同的挑選方法共有()(A)種(B)種(C)種(D)種6.口袋中放有大小相等的2個紅球和1個白球,有放回地每次摸取一個球,定義數(shù)列,如果為數(shù)列前n項和,則的概率等于()A. B.C. D.7.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈A.1盞 B.3盞C.5盞 D.9盞8.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷9.六安一中高三教學(xué)樓共五層,甲、乙、丙、丁四人走進(jìn)該教學(xué)樓2~5層的某一層樓上課,則滿足且僅有一人上5樓上課,且甲不在2樓上課的所有可能的情況有()種A.27 B.81 C.54 D.10810.把座位編號為1,2,3,4,5,6的六張電影票全部分給甲、乙、丙、丁四個人,每人最多得兩張,甲、乙各分得一張電影票,且甲所得電影票的編號總大于乙所得電影票的編號,則不同的分法共有()A.90種 B.120種 C.180種 D.240種11.的展開式中,的系數(shù)為()A.-10 B.-5 C.5 D.012.在上可導(dǎo)的函數(shù)的圖像如圖所示,則關(guān)于的不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,滿足,,則向量與夾角的取值范圍是______.14.若函數(shù)為偶函數(shù),則.15.____.16.將一邊長為的正方形鐵片的四角截去四個邊長均為的小正方形,然后做成一個無蓋的方盒,當(dāng)?shù)扔赺_________時,方盒的容積最大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為回饋顧客,新華都購物商場擬通過摸球兌獎的方式對500位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機摸出2個球(球的大小、形狀一模一樣),球上所標(biāo)的面值之和為該顧客所獲的獎勵額.(1)若袋中所裝的4個球中有1個所標(biāo)的面值為40元,其余3個所標(biāo)的面值均為20元,求顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;(2)商場對獎勵總額的預(yù)算是30000元,并規(guī)定袋中的4個球由標(biāo)有面值為20元和40元的兩種球共同組成,或標(biāo)有面值為15元和45元的兩種球共同組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡.請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.提示:袋中的4個球由標(biāo)有面值為a元和b元的兩種球共同組成,即袋中的4個球所標(biāo)的面值“既有a元又有b元”.18.(12分)在平面直角坐標(biāo)系中,圓為參數(shù),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線l的極坐標(biāo)方程為.分別求圓的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;設(shè)直線交曲線于兩點,曲線于兩點,求的長;為曲線上任意一點,求的取值范圍.19.(12分)已知函數(shù)(且),.(1)函數(shù)的圖象恒過定點,求點坐標(biāo);(2)若函數(shù)的圖象過點,證明:方程在上有唯一解.20.(12分)動點在拋物線上,過點作垂直于軸,垂足為,設(shè).(Ⅰ)求點的軌跡的方程;(Ⅱ)設(shè)點,過點的直線交軌跡于兩點,直線的斜率分別為,求的最小值.21.(12分)已知復(fù)數(shù)(a,),(c,).(1)當(dāng),,,時,求,,;(2)根據(jù)(1)的計算結(jié)果猜想與的關(guān)系,并證明該關(guān)系的一般性22.(10分)有3名男生和3名女生,每人都單獨參加某次面試,現(xiàn)安排他們的出場順序.(Ⅰ)若女生甲不在第一個出場,女生乙不在最后一個出場,求不同的安排方式總數(shù);(Ⅱ)若3名男生的出場順序不同時相鄰,求不同的安排方式總數(shù)(列式并用數(shù)字作答).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標(biāo)求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點的坐標(biāo)代入函數(shù),得,即,因為,所以,所以函數(shù)的表達(dá)式為.故選D.【點睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.2、D【解析】分析:把點的極坐標(biāo)化為直角坐標(biāo),求出過點且平行極軸的直線直角坐標(biāo)方程,再把它化為極坐標(biāo)方程.詳解:把點的極坐標(biāo)化為直角坐標(biāo)為故過點且平行極軸的直線方程是,

化為極坐標(biāo)方程為,

故選D.點睛:本題主要考查把點的極坐標(biāo)化為直角坐標(biāo),把直角坐標(biāo)方程化為即坐標(biāo)方程的方法,屬于基礎(chǔ)題.3、A【解析】

通過導(dǎo)函數(shù)大于0原函數(shù)為增函數(shù),導(dǎo)函數(shù)小于0原函數(shù)為減函數(shù)判斷函數(shù)的增減區(qū)間,從而確定函數(shù)的極值.【詳解】由導(dǎo)函數(shù)圖像可知:導(dǎo)函數(shù)在上小于0,于是原函數(shù)在上單調(diào)遞減,在上大于等于0,于是原函數(shù)在上單調(diào)遞增,所以原函數(shù)在處取得極小值,無極大值,故選A.【點睛】本題主要考查導(dǎo)函數(shù)與原函數(shù)的聯(lián)系,極值的相關(guān)概念,難度不大.4、D【解析】第一種抽樣是簡單隨機抽樣,簡單隨機抽樣是指從樣本中隨機抽取一個,其特點是容量不要太多.第二種是系統(tǒng)抽樣,系統(tǒng)抽樣就是指像機器一樣的抽取物品,每隔一段時間或距離抽取一個.而分層抽樣,必需是有明顯的分段性,然后按等比例進(jìn)行抽取.故選D5、C【解析】∵從10個同學(xué)中挑選4名參加某項公益活動有種不同挑選方法;從甲、乙之外的8個同學(xué)中挑選4名參加某項公益活動有種不同挑選方法;∴甲、乙中至少有1人參加,則不同的挑選方法共有種不同挑選方法故選C;【考點】此題重點考察組合的意義和組合數(shù)公式;【突破】從參加“某項”切入,選中的無區(qū)別,從而為組合問題;由“至少”從反面排除易于解決;6、B【解析】分析:由題意可得模球的次數(shù)為7次,只有兩次摸到紅球,由于每次摸球的結(jié)果數(shù)之間沒有影響,利用獨立性事件的概率乘法公式求解即可.詳解:由題意說明摸球七次,只有兩次摸到紅球,因為每次摸球的結(jié)果數(shù)之間沒有影響,摸到紅球的概率是,摸到白球的概率是所以只有兩次摸到紅球的概率是,故選B.點睛:本題主要考查了獨立事件的概率乘法公式的應(yīng)用,其中解答中通過確定摸球次數(shù),且只有兩次摸到紅球是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力.7、B【解析】

設(shè)塔頂?shù)腶1盞燈,由題意{an}是公比為2的等比數(shù)列,∴S7==181,解得a1=1.故選B.8、C【解析】

根據(jù)均值定義列式計算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【點睛】本題考查均值與方差的計算公式,考查方差的含義.屬于基礎(chǔ)題.9、B【解析】

以特殊元素甲為主體,根據(jù)分類計數(shù)原理,計算出所有可能的情況,求得結(jié)果.【詳解】甲在五樓有33甲不在五樓且不在二樓有C3由分類加法計數(shù)原理知共有54+27=81種不同的情況,故選B.【點睛】該題主要考查排列組合的有關(guān)知識,需要理解排列組合的概念,根據(jù)題目要求分情況計數(shù),屬于簡單題目.10、A【解析】

從6張電影票中任選2張給甲、乙兩人,共種方法;再將剩余4張票平均分給丙丁2人,共有種方法;根據(jù)分步乘法計數(shù)原理即可求得結(jié)果.【詳解】分兩步:先從6張電影票中任選2張給甲,乙兩人,有種分法;再分配剩余的4張,而每人最多兩張,所以每人各得兩張,有種分法,由分步原理得,共有種分法.故選:A【點睛】本題主要考查分步乘法計數(shù)原理與組合的綜合問題.11、B【解析】

在的二項展開式的通項公式中,令x的冪指數(shù)分別等于2和1,求出r的值,得到含與的項,再與、與-1對應(yīng)相乘即可求得展開式中x的系數(shù).【詳解】要求的系數(shù),則的展開式中項與相乘,項與-1相乘,的展開式中項為,與相乘得到,的展開式中項為,與-1相乘得到,所以的系數(shù)為.故選B.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式及特定項的系數(shù),屬于基礎(chǔ)題.12、B【解析】

分別討論三種情況,然后求并集得到答案.【詳解】當(dāng)時:函數(shù)單調(diào)遞增,根據(jù)圖形知:或當(dāng)時:不成立當(dāng)時:函數(shù)單調(diào)遞減根據(jù)圖形知:綜上所述:故答案選B【點睛】本題考查了根據(jù)圖像判斷函數(shù)的單調(diào)性,意在考查學(xué)生的讀圖能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知,得,由,得,由不等式可知,再由,得,最后由可得解.【詳解】由,,得,即由,得,即由,得由,得所以,.故答案為:【點睛】本題考查了向量及其模的運算,考查了向量的夾角公式和基本不等式,考查了計算能力,屬于中檔題.14、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點:函數(shù)的奇偶性.【方法點晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?5、【解析】

分別求得和的值,相加求得表達(dá)式的結(jié)果.【詳解】由于表示圓心在原點,半徑為的圓的上半部分,故..故原式.【點睛】本小題主要考查利用幾何意義計算定積分的值,考查定積分的計算,屬于基礎(chǔ)題.16、【解析】

先求出方盒容積的表達(dá)式,再利用導(dǎo)數(shù)根據(jù)單調(diào)性求最大值.【詳解】方盒的容積為:當(dāng)時函數(shù)遞減,當(dāng)時函數(shù)遞增故答案為【點睛】本題考查了函數(shù)的最大值的應(yīng)用,意在考查學(xué)生的應(yīng)用能力和計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析;期望為50;(2)應(yīng)該選擇面值設(shè)計方案“”,即標(biāo)有面值元和面值元的球各兩個【解析】

(1)設(shè)顧客獲得的獎勵額為,隨機變量的可能取值為,分別求出對應(yīng)概率,列出分布列并求出期望即可;(2)分析可知期望為60元,討論兩種方案:若選擇“”的面值設(shè)計,只有“”的面值組合符合期望為60元,求出方差;當(dāng)球標(biāo)有的面值為元和元時,面值設(shè)計是“”符合期望為60元,求出方差,比較兩種情況的方差,即可得出結(jié)論.【詳解】解:(1)設(shè)顧客獲得的獎勵額為,隨機變量的可能取值為.,,所以的分布列如下:所以顧客所獲的獎勵額的期望為(2)根據(jù)商場的預(yù)算,每個顧客的平均獎勵額為元.所以可先尋找使期望為60元的可能方案:當(dāng)球標(biāo)有的面值為元和元時,若選擇“”的面值設(shè)計,因為元是面值之和的最大值,所以期望不可能為;若選擇“”的面值設(shè)計,因為元是面值之和的最小值,所以期望不可能為.因此可能的面值設(shè)計是選擇“”,設(shè)此方案中顧客所獲得獎勵額為,則的可能取值為..的分布列如下:所以的期望為的方差為當(dāng)球標(biāo)有的面值為元和元時,同理可排除“”、“”的面值設(shè)計,所以可能的面值設(shè)計是選擇“”,設(shè)此方案中顧客所獲的獎勵額為,則的可能取值為..的分布列如下:所以的期望為的方差為因為即兩種方案獎勵額的期望都符合要求,但面值設(shè)計方案“”的獎勵額的方差要比面值設(shè)計方案“”的方差小,所以應(yīng)該選擇面值設(shè)計方案“”,即標(biāo)有面值元和面值元的球各兩個.【點睛】本題考查了離散型隨機變量的分布列,考查了期望與方差的應(yīng)用,考查了學(xué)生的計算能力,屬于中檔題.18、(1),;(2);(3).【解析】

消去參數(shù)得到普通方程,利用這個是可得到的直角坐標(biāo),直接利用轉(zhuǎn)換關(guān)系對極坐標(biāo)方程進(jìn)行轉(zhuǎn)換可得到曲線的極坐標(biāo)方程;利用方程組和兩點間的距離公式分別求出,相減求出結(jié)果.利用向量的數(shù)量積和三角函數(shù)關(guān)系式的恒等變換及正弦型函數(shù)的性質(zhì)可求出結(jié)果.【詳解】圓為參數(shù),轉(zhuǎn)換為直角坐標(biāo)方程為:,,利用轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的極坐標(biāo)方程為,轉(zhuǎn)化為,利用整理得:.直線l的極坐標(biāo)方程為.轉(zhuǎn)換為直角坐標(biāo)方程為:,由于直線交曲線于兩點,則:,解得:或,所以:,同理:直線交曲線于兩點,則:,解得:或.所以:,所以:.由于,則,P為曲線上任意一點,,則:,所以,的范圍是.【點睛】本題考查的知識要點:參數(shù)方程化為直角坐標(biāo)方程,直角坐標(biāo)方程與極坐標(biāo)方程之間的轉(zhuǎn)換,平面向量的數(shù)量積公式的應(yīng)用,兩點間距離公式的應(yīng)用,三角函數(shù)關(guān)系式的恒等變變換及輔助角公式與角函數(shù)的有界性,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.19、(1);(2)證明見解析.【解析】試題分析:(1)結(jié)合對數(shù)函數(shù)的性質(zhì)可得函數(shù)的圖象恒過定點;(2)由題意結(jié)合函數(shù)的單調(diào)性和函數(shù)的值域即可證得題中的結(jié)論.試題解析:(1)解:∵當(dāng)時,,說明的圖象恒過點.(2)證明:∵過,∴,∴,∵分別為上的增函數(shù)和減函數(shù),∴為上的增函數(shù),∴在上至多有一個零點,又,∴在上至多有一個零點,而,,∴在上有唯一解.20、(Ⅰ)(Ⅱ)1【解析】

(1)設(shè)Q(x,y),則P(x,2y),代入x2=2y得出軌跡方程;(2)聯(lián)立直線AB方程與Q的軌跡方程,得出A,B的坐標(biāo)關(guān)系,代入斜率公式化簡|k1﹣k2|,利用二次函數(shù)的性質(zhì)求出最小值.【詳解】(Ⅰ)設(shè)點,則由得,因為點在拋物線上,(Ⅱ)方法一:由已知,直線的斜率一定存在,設(shè)點,聯(lián)立得由韋達(dá)定理得(1)當(dāng)直線經(jīng)過點即或時,當(dāng)時,直線的斜率看作拋物線在點處的切線斜率,則,此時;當(dāng)時,同理可得(2)當(dāng)直線不經(jīng)過點即且時,,所以的最小值為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論