離散數(shù)學(xué)好像不怎么重要邏輯與證明logic_第1頁(yè)
離散數(shù)學(xué)好像不怎么重要邏輯與證明logic_第2頁(yè)
離散數(shù)學(xué)好像不怎么重要邏輯與證明logic_第3頁(yè)
離散數(shù)學(xué)好像不怎么重要邏輯與證明logic_第4頁(yè)
離散數(shù)學(xué)好像不怎么重要邏輯與證明logic_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DiscreteDiscreteMathematicsandits—LogicandProofs(5)XiaocongZHOUDepartmentofComputerScienceSunYat-senJan.XiaocongZHOU Discrete Jan. 1/ RulesofInference: RulesofInferenceinPropositional RulesofInference XiaocongZHOU

Discrete

Jan. 2/

RulesofInference:ProofsinmathematicsarevalidargumentsthatestablishthetruthAnargumentmeansasequenceofstatementsthatendwithaAnargumentisvalidifandonlyifitisimpossibleforallthepremisestotrueandtheconclusiontobePremisesisthestatementswhosetruthswealreadyhaveConclusionisthestatementwhosetruthwewanttoRulesofinferenceare tesforconstructingvalidRulesofinferenceareourbasictoolsforestablishingthetruthofXiaocongZHOU

Discrete

Jan. 3/RulesofInferenceinPropositionalAnargumentinpropositionallogicisasequenceofAllbutthefinalpropositionintheargumentarecalledThefinalpropositioniscalledtheAnargumentisvalidifthetruthofallitspremisesimpliesthatconclusionisAnargumentforminpropositionallogicisasequenceofAnargumentfromisvalidnomatterwhichparticularpropositionsaresubstitutedforthevariablesinitspremisesandthetheconclusionistrueifthepremisesareallTheargumentformwithpremisesp1,p2,···,pnandconclusionqisXiaocongZHOUDiscreteJan. 4/when(p1∧p2∧···∧XiaocongZHOUDiscreteJan. 4/RulesofInferenceinPropositionalRulesofinferenceinpropositionalRulesofinferencearerelativelysimpleargumentformswhosevalidityhavebeenestablishedTheserulesofinferencecanbeusedasbuildingblockstoconstructcomplicatedvalidargumentImportantrulesofinferenceinpropositionalModusponens(分離規(guī)則),i.e.lawof ent:(p∧(p→q))→Modustollens(拒取式(?q(p→q→ ):((p→q)∧(q→r))→(p→ ):((p∧q)∧?p)→Addition(附加律p→(pSimplification(化簡(jiǎn)律(pq→Conjunction(合取律((p(q(pResolution(消解律((pq(?pr(qXiaocongZHOU

Discrete

Jan. 5/RulesofInferenceinPropositionalRulesofinferenceinpropositionalExample(ModusSupposethattheconditionalstatementanditshypothesisareBymodusponens,itfollowsthattheconclusionofthestatementisXiaocongZHOUDiscreteJan.XiaocongZHOUDiscreteJan. 5/RulesofInferenceinPropositionalRulesofinferenceinpropositionalAvalidargumentcanleadtoanincorrectconclusiononormoreofitspremisesisDeterminewhethertheargumentgivenhereisanddeterminewhetheritsconclusionmustbetruebecauseofthevalidityoftheargument“If√2>3then(√2)2>(3 “Weknowthat√2>32“Consequently,(√2)2=2>(3)2=9XiaocongZHOUXiaocongZHOUDiscreteJan. 5/RulesofInferenceinPropositionalRulesofinferenceinpropositionalExample(AdditionStatewhichruleofinferenceisthebasisofthefollowing“Itis 雨Example(SimplificationStatewhichruleofinferenceisthebasisofthefollowing“Itis “Thereforeitis XiaocongZHOU

Discrete

Jan. 5/RulesofInferenceinPropositionalRulesofinferenceinpropositionalExample(HypotheticalStatewhichruleofinferenceisusedinthe“Ifwedonothaveabarbecuetoday,thenwewillhaveaXiaocongZHOUDiscreteJan. 5/XiaocongZHOUDiscreteJan. 5/RulesofInferenceinPropositionalUsingrulesofinferencetobuildShowthatthe“Itisnotsunnythisafternoonanditiscolderthanyesterday(今下午沒(méi)有“Wewillgoswimmingonlyifitissunny(只有 “Ifwedonotgoswimmingthenwewilltakeacanoetrip(如果我們不“Ifwetakeacanoetripthenwewillbehomebysunset(leadtothe“Wewillbehomebysunset(我們?nèi)章鋾r(shí)回家XiaocongZHOU

Discrete

Jan. 6/RulesofInferenceinPropositionalUsingrulesofinferencetobuildShowthatthe“Ifyousendmeane-mailmessagethenIwillfinishwritingtheprogram(“Ifyoudonotsendmeane-mailmessagethenIwillgotosleepearly(“IfIgotosleepearlythenIwillwakeupfellingrefreshed(leadtothe“IfIdonotfinishwritingtheprogram,thenIwillwakeupXiaocongZHOUDiscreteJan. 6/XiaocongZHOUDiscreteJan. 6/

RulesofInferenceinPropositionalComputerprogramshavebeendevelopedtoautomatethetaskreasoningandprovingManyoftheseprogramsmakeuseofaruleofinferenceknownThisruleofinferenceisbasedonthe((p∨q)∧(?p∨r))→(q∨XiaocongZHOUDiscreteJan. 7/ThefinaldisjunctionintheresolutionruleqXiaocongZHOUDiscreteJan. 7/

RulesofInferenceinPropositionalUseresolutiontoshowthatthe“ItissnowingorBart imply“JasmineisskiingorBartis XiaocongZHOU

Discrete

Jan. 7/

RulesofInferenceinPropositional ysanimportantroleinprogramminglanguagesbasedontherulesoflogicsuchasProlog,whereresolutionrules ResolutioncanbeusedtobuildautomatictheoremprovingToconstructproofsinpropositionallogicusingresolutionastheonlyruleofinference,thehypothesesandtheconclusionmustbeexpressedasclausesAclauseisadisjunctionofvariablesornegationsoftheseWecanreceastatementinpropositionallogicthatisnotaclausebyoneormoreequivalentstatementsthatareclausesXiaocongZHOU

Discrete

Jan. 7/

RulesofInferenceinPropositionalXiaocongXiaocongZHOUDiscreteJan. 7/Showthatthehypotheses(p∧q)∨randr→simplythepFallacy(謬論ofaffirmingtheTheproposition((p→q)∧q)→pisnotaitisfalsewhenpisfalseandqisTherearemanyincorrectargumentsthattreatthisasaTheytreattheargumentwithpremisesp→qandqandconclusionpasvalidargumentIsthefollowingargument“Ifyoudoeveryprobleminthisbook,thenyouwilllearnXiaocongZHOUDiscreteJan. 8/XiaocongZHOUDiscreteJan. 8/FallacyofdenyingtheTheproposition((p→q)∧?p)→?qisnotaitisfalsewhenpisfalseandpisIsthefollowingargument“YoudidnotlearndiscretemathematicsifyoudidnotdoeveryproblemXiaocongZHOUDiscreteJan. 9/XiaocongZHOUDiscreteJan. 9/RulesofInference fiedRulesofinference fiedToconcludethatP(c)istrue,giventhepremisewherecisaparticularmemberofelementscinweshowthat?xP(x)istruebytakinganarbitraryelementcfromtheandshowingthatP(c)istrueTheelementcthatweselectmustbeanarbitrary,andnotaspecific,ofUniversalgeneralizationisusedimplicitlyinmanyproofsinandisseldommentionedHowever,theerrorofaddingunwarrantedassumptionsabouttheelementcwhenuniversalgeneralizationisusedisalltoocommoninincorrectXiaocongZHOU

Discrete

Jan. 10/RulesofInference fiedRulesofinference fiedToconcludethatthereisanelementcin forwhichP(c)istrueweknowthat?xP(x)isWecannotselectanarbitraryvalueofchere,butratheritmustbeacforP(c)isUsuallywehavenoknowledgeofwhatcis,onlythatitBecauseitexists,wemaygiveitaname(c)andcontinueourToconcludethat?xP(x)istruewhenaparticularelementcwithP(c)trueisIfweknowoneelementcinthe forwhichP(c)istrue,thenweknowthat?xP(x)istrueXiaocongZHOU

Discrete

Jan. 10/RulesofInference fiedRulesofinference fiedShowthatthe“Everyoneinthisdiscretemathematicsclasshastakenacourse“Marlaisastudentinthisclass(Marla是這個(gè)班的學(xué)生implytheXiaocongZHOU

Discrete

Jan. 10/RulesofInference fiedRulesofinference fiedShowthatthe“Astudentinthisclasshasnotreadthe“Everyoneinth

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論