濕度控制系統(tǒng)設(shè)計(jì)外文翻譯_第1頁(yè)
濕度控制系統(tǒng)設(shè)計(jì)外文翻譯_第2頁(yè)
濕度控制系統(tǒng)設(shè)計(jì)外文翻譯_第3頁(yè)
濕度控制系統(tǒng)設(shè)計(jì)外文翻譯_第4頁(yè)
濕度控制系統(tǒng)設(shè)計(jì)外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

譯文:高效節(jié)能汽車空調(diào)除濕協(xié)助及其溫濕度限制系統(tǒng)K.Nagaya*,T.Senbongi,Y.Li,J.Zheng,I.MurakamiDepartmentofMechanicalEngineering,GunmaGunma376-8515,JapanReceived9November2004;accepted6December2005Availableonline19January2摘要:在汽車的空調(diào)系統(tǒng)中,能源效率是很重要的。本文供應(yīng)了一種能量損失較少一些的新型汽車空調(diào)系統(tǒng)。在該系統(tǒng)中,安裝在空調(diào)系統(tǒng)中的干燥劑是為了限制溫度和濕度。這種限制是由限制一個(gè)傾斜的旋轉(zhuǎn)板的壓縮機(jī)的電磁限制閥所進(jìn)行的。溫度和濕度的精確度都是很難限制的,因?yàn)橛幸恍┯捎跁r(shí)間的熱交換及冷卻液流量從執(zhí)行器(電磁閥)的蒸發(fā)器而引致的延遲限制。為了精確限制,本文還提出了一種思索限制延遲的限制方法。在相同的條件下,這個(gè)系統(tǒng)的能源與以平常規(guī)系統(tǒng)相比較,結(jié)果表明,我們的限制結(jié)果和能源效率比以往的系統(tǒng)要更好。關(guān)鍵詞:汽車;空調(diào);除濕;溫度限制;濕度限制;低能量;能量損失1介紹最近,空調(diào)被要求低能源消耗及低環(huán)境危害,一批有關(guān)于建筑空調(diào)和汽車空調(diào)[1–12]已經(jīng)報(bào)道。在探討中,為了削減能源和基于熱力學(xué)及流體力學(xué)的環(huán)境危害,最優(yōu)性條件試驗(yàn)發(fā)覺(jué)進(jìn)行了各種方法的探討[1-8]。最近,給出了一些理論和數(shù)值方法[9–12]。在系統(tǒng)中提出上述文件,探討了主要的冷卻系統(tǒng)。在空調(diào)中,溫度和濕度應(yīng)限制同時(shí)進(jìn)行。然而,濕度降低的探討系統(tǒng)沒(méi)有得到深化探討。傳統(tǒng)空調(diào),一般來(lái)說(shuō),濕度由一個(gè)加熱器限制,所以這個(gè)系統(tǒng)有一個(gè)小的能量效率限制濕度。在空調(diào)系統(tǒng)中,由于濕度限制也是重要的因素,能量損失。從形勢(shì)上,布拉曼亞姆等人。提出一個(gè)干燥劑協(xié)助空調(diào)系統(tǒng)[13,14],其中再熱系統(tǒng)是不須要的。本系統(tǒng)可用于一般建筑空調(diào),但它沒(méi)有被應(yīng)用于汽車空調(diào)。汽車,一個(gè)能量損失小空調(diào)需求被劇烈要求,由于壓縮機(jī)由發(fā)動(dòng)機(jī)驅(qū)動(dòng)的。因?yàn)榭諝鉁囟容^低是冷卻,然后在有捷瑞除濕機(jī)系統(tǒng)中再熱,能量效率削減,并且很難精確地限制濕度。濕度大,感覺(jué)不舒適,即使溫度在舒適的范圍。在溫度和濕度之間存在著一個(gè)讓人感覺(jué)舒適的范圍,因此,無(wú)論是溫度和濕度必需在適當(dāng)?shù)姆秶T谄嚿?,溫度被限制,但濕度限制不精確,雖然通過(guò)再熱系統(tǒng)使溫度降低。本文的目的是提出一個(gè)從可限制溫度和濕度該點(diǎn)切入的工程應(yīng)用的一個(gè)汽車空調(diào),與以前的汽車空調(diào)相比,它的能源效率較大。為了有這樣的一個(gè)系統(tǒng)、除濕[13、14]用于汽車空調(diào)。汽車空調(diào)系統(tǒng)的有些不同于建筑空調(diào),因此限制系統(tǒng)及限制算法顯得很重要的。本文中,空調(diào)系統(tǒng)運(yùn)用干燥劑,其中通過(guò)電磁閥進(jìn)行壓縮機(jī)的限制。因?yàn)樵谙到y(tǒng)中有一個(gè)時(shí)間延遲,由于冷卻流體流淌與傳熱交換的緣由,也提出了思索延時(shí)的限制方法。該系統(tǒng)的轉(zhuǎn)矩與傳統(tǒng)的系統(tǒng)比較,是一樣的溫度和濕度。2.開(kāi)發(fā)運(yùn)用干燥劑的汽車空調(diào)器2.1.幾何系統(tǒng)雖然有一些改變,試驗(yàn)中運(yùn)用的冷卻系統(tǒng)與常規(guī)汽車空調(diào)系統(tǒng)是相同的,通常被用來(lái)作為R134A工作液。圖1顯示了在這篇文章里汽車空調(diào)系統(tǒng)的幾何形態(tài)的。=1\*GB3①馬達(dá),=2\*GB3②扭力計(jì),=3\*GB3③滑輪,=4\*GB3④皮帶,=5\*GB3⑤壓縮機(jī),=6\*GB3⑥壓縮機(jī)離合器,=7\*GB3⑦電磁閥,=8\*GB3⑧橡膠管,=9\*GB3⑨冷凝器,=10\*GB3⑩液體罐,eq\o\ac(○,11)蒸發(fā)器,eq\o\ac(○,12)蒸發(fā)器風(fēng)扇,eq\o\ac(○,13)溫濕度指示器,eq\o\ac(○,14)干燥劑,eq\o\ac(○,15)加濕器,eq\o\ac(○,16)放大器,eq\o\ac(○,17)限制箱,eq\o\ac(○,18)管道,eq\o\ac(○,19)數(shù)字信號(hào)處理(數(shù)字信號(hào)處理器),eq\o\ac(○,20)計(jì)算機(jī)圖1.試驗(yàn)裝置為了推動(dòng)壓縮機(jī),電機(jī)代替發(fā)動(dòng)機(jī)運(yùn)用,其中電機(jī)1驅(qū)動(dòng)輪3和4,和扭矩傳送到壓縮機(jī)5。當(dāng)離合器6壓縮機(jī)的5部作品,將電機(jī)的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)變?yōu)橥鶑?fù)運(yùn)動(dòng)。它壓縮冷卻的是由一個(gè)電磁閥7壓力限制的壓縮機(jī),9冷卻冷凝器的冷卻液,和液體罐10分別蒸氣里的液體的,于是只有液體冷卻液是供應(yīng)應(yīng)蒸發(fā)器11。蒸發(fā)器11得到的熱量,和冷卻劑液體由于蒸發(fā)變成了氣體。這個(gè)周期重復(fù),蒸發(fā)器四周的空氣溫度降低。在該系統(tǒng)中,雖然溫度下降,濕度增加。溫度和濕度對(duì)于制造舒適的氣氛是特別重要的,因此在平常的空調(diào)被加熱的空氣冷卻有低濕度空氣。在該系統(tǒng)中,雖然濕度削減,其限制是不完備的,因?yàn)樵跐穸认拗葡到y(tǒng)中它是很困難的。此外,由于被加熱的空氣冷卻,空氣的溫應(yīng)在規(guī)定的溫度冷卻。這意味著能量損失會(huì)很大。干燥劑是適用于在干燥的空氣中,因?yàn)楦稍飫┺D(zhuǎn)子工作在低溫,因此本文采納干燥劑轉(zhuǎn)子14所示圖1。在試驗(yàn)具有相同的濕度,加濕器15為試驗(yàn)供應(yīng)濕空氣。它當(dāng)然是不須要在實(shí)際空調(diào)。2.2應(yīng)用在系統(tǒng)中的元素在上述系統(tǒng)中,運(yùn)用溫濕度傳感器13檢測(cè)空調(diào)吹出來(lái)的溫度與濕度,,扭力計(jì)2檢測(cè)壓縮機(jī)的扭矩軸,和那些是輸入到數(shù)字信號(hào)處理器的信號(hào)(dsp19)19。運(yùn)用這些信號(hào),數(shù)字信號(hào)處理器19計(jì)算相應(yīng)的限制電壓的電磁閥在壓縮機(jī)如下所述。在這個(gè)系統(tǒng)中運(yùn)用的內(nèi)容如下:電磁離合器6離合器6允許在–限制的傳輸連接驅(qū)動(dòng)軸之間的電機(jī)和壓縮機(jī)軸。這也是作為一個(gè)平安裝置,當(dāng)冷凝器9凍結(jié)濕,切割傳輸。當(dāng)溫度上升,它使傳輸又一次連接。蒸發(fā)器風(fēng)扇12蒸發(fā)器風(fēng)扇12冷卻的蒸發(fā)器,當(dāng)風(fēng)扇速度增加,蒸發(fā)量會(huì)增加。比較本系統(tǒng)和常規(guī)系統(tǒng),試驗(yàn)條件應(yīng)當(dāng)是相同的,那么試驗(yàn)中,風(fēng)扇始終保持著速度。圖2.比較目前干燥劑和常規(guī)系統(tǒng)常規(guī)系統(tǒng)和(b)除濕系統(tǒng)干燥劑14因?yàn)?,低恒定速度不宜為干燥劑轉(zhuǎn)子為所擁有足夠的效率。參考文獻(xiàn)[13,14]用于開(kāi)關(guān)限制的干燥劑轉(zhuǎn)子。圖二顯示比較傳統(tǒng)的系統(tǒng)。(圖2(a))和本系統(tǒng)(圖2(b)。在傳統(tǒng)的系統(tǒng),由于吸入的空氣是由蒸發(fā)器冷卻,加熱器核心用于加熱,冷卻和低濕度空氣流淌的房間。在這種狀況下,該冷卻空氣的溫度比預(yù)期由于加熱的溫度有明顯減小。這意味著力要求傳統(tǒng)的系統(tǒng)。同時(shí),在我們的系統(tǒng)中,干燥的空氣從干燥劑混合吸入空氣,并冷卻低濕度空氣。雖然溫度干燥空氣干燥劑是略大于所需溫度,冷卻空氣的溫度卻很接近于志向溫度。這使得由于在冷卻系統(tǒng)中能量損失小。圖3顯示了幾何的除濕轉(zhuǎn)子其中硅膠裝。圖3.干燥劑轉(zhuǎn)子首先考察干燥劑和加濕器的溫度和濕度的影響。只thedesiccant工程時(shí),溫度收斂的31C左右,而只有加濕器工作時(shí),脾氣也CON-青草C.約31干燥劑和加濕器的工作時(shí),溫度收斂濕度約34C。干燥劑是能夠降低濕度直到5%。加濕器的濕度限制,它創(chuàng)建,直到60%的濕度。的溫度和濕度的穩(wěn)定時(shí)間約180秒。以干硅膠干燥劑轉(zhuǎn)子,該系統(tǒng)采納電加熱器。最近,利用發(fā)動(dòng)機(jī)熱量的方法進(jìn)行了探討,為干燥的空氣,而不是運(yùn)用熱水器。在現(xiàn)行制度下,雖然須要管供應(yīng)熱量從散熱器的硅膠轉(zhuǎn)子,該方法也同樣適用,因此,由于加熱器的能源是不是須要這樣的系統(tǒng)。因?yàn)?,傳統(tǒng)的系統(tǒng)獲得低濕度的空氣重新加熱的空氣,大過(guò)冷卻是必需的。在壓縮機(jī)的過(guò)度冷卻消耗的能量。在本系統(tǒng)中,運(yùn)用干燥劑,過(guò)冷卻是在與傳統(tǒng)系統(tǒng)相比,明顯小。為了澄清,在壓縮傳感器所消耗的能量為我們的制度和傳統(tǒng)的系統(tǒng)探討。在兩種狀況下,同等條件下進(jìn)行試驗(yàn)。電磁閥在壓縮機(jī)57由于溫度的實(shí)時(shí)限制要求,在本系統(tǒng)中的電磁閥的壓縮機(jī)是適當(dāng)?shù)?。電磁閥限制盤與活塞板活塞式壓縮機(jī),活塞電磁閥限制中風(fēng)的傾向。在本試驗(yàn)中運(yùn)用的壓縮機(jī)MLA6167ACalsonic有限公司,這是一個(gè)一般的汽車空調(diào)運(yùn)用。這種壓縮機(jī)的非限制下進(jìn)行的性能測(cè)試。圖5(a)顯示溫度電磁閥電壓(0,6和12V)3例VER-SUS時(shí)間。不斷測(cè)試,所以在600秒的值作為將來(lái)案件的初始值是相同的。當(dāng)沒(méi)有輸入電壓閥門,溫度隨時(shí)間削減。這意味著,無(wú)閥限制的的COM壓縮機(jī)工程。溫度降低時(shí),閥電壓增加6V和12V12V是作為特別狀況下的曲線所示,因?yàn)椴贿\(yùn)用空調(diào)的溫度在冰點(diǎn)。從圖中,壓縮機(jī)的容量是足夠的圖5(b)顯示與三個(gè)電壓時(shí)的濕度(相對(duì)濕度)。閥的電壓為0V時(shí)的濕度增加和飽和率。在其他兩種狀況下,濕度的降低,然后增加和飽和曲線圖所示。5(B)。雖然也有一些分歧的狀況下,相對(duì)濕度增加,在一般狀況下,由于溫度降低。為了降低濕度,潮濕的空氣干燥加熱器芯,或在傳統(tǒng)的系統(tǒng)從發(fā)動(dòng)機(jī)的熱空氣混合。加熱和風(fēng)扇轉(zhuǎn)速的組合限制也運(yùn)用,但它是很難限制系統(tǒng)中的溫度和濕度的同時(shí)。在本文章中,有一個(gè)精確的限制,壓縮機(jī),電磁閥限制溫度,除濕轉(zhuǎn)子限制濕度。加熱器的核心有傳統(tǒng)系統(tǒng)的特點(diǎn),也與熱水器的核心實(shí)力為1200W的運(yùn)用。它被放置在空調(diào)出點(diǎn)打擊,并用于通斷限制。熱水器在目前的制度,當(dāng)然不須要。

3.目前系統(tǒng)的溫度和濕度限制

4.目前系統(tǒng)和傳統(tǒng)系統(tǒng)的能量之間的比較.由于壓縮機(jī)的能源消耗是親部分的扭矩,扭矩測(cè)量。B曲線圖。12描述了PD限制下的傳統(tǒng)系統(tǒng),曲線圖A扭矩響應(yīng)時(shí)間。12(二)目前的限制下,我們的除濕系統(tǒng)的響應(yīng)。在限制后的初始地區(qū),本系統(tǒng)和傳統(tǒng)系統(tǒng)之間的扭矩的差異很小,但40秒后,重復(fù)的大扭矩在傳統(tǒng)的系統(tǒng)視察,而在我們的系統(tǒng)小扭矩,小振蕩視察。很明顯,本系統(tǒng)的總扭矩小于傳統(tǒng)系統(tǒng)。的扭矩的平均值顯示inTables3A“三個(gè)軸的旋轉(zhuǎn)速度5。因?yàn)椋瑥?到100秒的地區(qū)是不穩(wěn)定的限制下,得到了100后,在兩種狀況下,從0到100秒的時(shí)間(表0)和時(shí)間平均值(100表)。表意味著,扭矩取決于速度,900RPM可以削減能量損失約27%,18%,為1800轉(zhuǎn),2400轉(zhuǎn)和17%,通過(guò)運(yùn)用本系統(tǒng)。雖然將被要求在硅膠的修理工作,這是我們的制度優(yōu)勢(shì)。5.結(jié)論

干燥劑幫助汽車空調(diào)限制系統(tǒng)已提出,在這兩個(gè)temperatureand濕度精確限制。為了限制系統(tǒng),自適應(yīng)限制相結(jié)合的PD限制。在這個(gè)試驗(yàn)中取得了一個(gè)原型系統(tǒng)已進(jìn)行試驗(yàn)測(cè)試。這是確定的,它是難以限制的濕度,在傳統(tǒng)的系統(tǒng)空調(diào)吹出來(lái)點(diǎn),而我們的系統(tǒng)可以同時(shí)限制溫度和濕度。此外,我們的系統(tǒng)的能源消耗比常規(guī)系統(tǒng)少。原文:Highenergyefficiencydesiccantassistedautomobileair-conditioneranditstemperatureandhumiditycontrolsystemK.Nagaya*,T.Senbongi,Y.Li,J.Zheng,I.MurakamiDepartmentofMechanicalEngineering,GunmaUniversityKiryu,Gunma376-8515,JapanReceived9November2004;accepted6December2005Availableonline19January2006Abstract:Theenergyefficiencyisofimportanceinairconditioningsystemsforautomobiles.Thepresentarticleprovidesanewtypeaircon-ditioningsystemforautomobilesinwhichenergylossissmallincomparisonwiththeprevioussystem.Inthesystem,adesiccantisinstalledintheairconditioningsystemforcontrollingbothtemperatureandhumidity.Thecontrolisperformedbyanelectromagneticcontrolvalve,whichcontrolsaninclinationoftherotatingplateofacompressor.Itisdifficulttocontrolbothtemperatureandhumidityprecisely,becausetherearesomedelaysinthecontrolduetothetimeofheatexchangeandthatofcoolantflowfromtheactuator(elec-tromagneticvalve)totheevaporator.Inordertohaveprecisecontrol,thisarticlealsopresentsamethodofcontrolwithconsiderationofcontroldelays.Theenergyofoursystemiscomparedwiththatinthepreviousconventionalsysteminthesamecondition.Itisshownthatourcontrolledresultsandenergyefficiencyarebetterthanthoseintheprevioussystem.Keywords:Automobile;Car;Airconditioner;Desiccant;Temperaturecontrol;Humiditycontrol;Lowenergy;Energyloss1.IntroductionRecently,airconditionerswithsmallenergylossandlowenvironmentalhazardarerequired,andanumberofinterestingstudieshavebeenreportedforbuildingaircon-ditionersandautomobileairconditioners[1–12].Inthestudies,variousmethodswerediscussedfordecreasingenergiesandenvironmentalhazardbasedonthermo-dynamicsandfluiddynamics,andoptimalconditionswerefoundexperimentally[1–8].Recently,theoreticalandnumericalapproacheswerealsogiven[9–12].Inthesys-temspresentedintheabovepapers,thecoolingsystemswerediscussedmainly.Inairconditioners,boththetem-peratureandhumidityshouldbecontrolledsimulta-neously.However,thestudiesonthehumiditydecreasingsystemhavenotbeeninvestigatedthoroughly.Inconven-tionalairconditioners,ingeneral,thehumidityiscon-trolledbyaheater,andsothesystemhasasmallenergyefficiencyforcontrollinghumidity.Theenergylossduetothehumiditycontrolisalsoimportantfactorintheaircon-ditioningsystem.Fromthesituation,Subramanyametal.presentedthesystemofadesiccantassistedair-conditioner[13,14],inwhichthereheatsystemwasnotrequired.Thesystemcanbeusedinusualbuildingairconditioners,butithasnotbeenappliedtoautomobileairconditioners.Foranautomobile,asmallenergylossairconditionerisstronglyrequired,becausethecompressorisdrivenbytheengine.Sincetheairwascooledatlowertemperature,thenreheatedtohavedryairinthesystem,theenergyefficiencydecreases,anditisdifficulttocontrolhumidityexactly.Whenthehumidityislarge,onefeelsuncomfortable,evenifthetemperatureisinthecomfortablerange.Thereistherelationbetweenthetemperatureandhumidityinwhichonefeelscomfortable.Hence,boththetemperatureandhumidityhavetobeintheappropriaterange.notcontrolledexactly,althoughthehumidityisdecreasedbythereheatsystem.Theobjectofthispaperistopresentanairconditionerforautomobilesfromastandpointofengineeringapplica-tions,whichcancontrolbothtemperatureandhumidity,andwhoseenergyefficiencyislargeincomparisonwithpreviousautomobileairconditioners.Inordertohavesuchasystem,thedesiccant[13,14]isutilizedfortheautomobileairconditioner.Theairconditioningsystemoftheautomo-bileissomewhatdifferentfrombuildingairconditioners,andsothecontrolsystemandthecontrolalgorithmareimportant.Inthisarticle,anairconditioningsystemusingthedesiccantispresented,inwhichthecompressoriscon-trolledbyanelectromagneticvalve.Sincethereisatimedelayinthesystemduetocoolantfluidflowandheatexchange,acontrolmethodisalsopresentedwithconsid-erationofthetimedelay.Thetorqueofthesystemiscom-paredwiththeconventionalsystemforthesametemperatureandhumidity.2.Developmentofanautomobileairconditionerusingdesiccants2.1.GeometryofthesystemAlthoughthereareafewchanges,thecoolingsystemusedinthisexperimentisthesameastheusualautomobileairconditionerinwhichR134Aisusedastheworkingfluid.Fig.1showsthegeometryoftheautomobileair-con-ditionersystempresentedinthisarticle.Inordertodrivethecompressor,aninductionmotorinsteadofanengineIsused,inwhichmotor1drivespulley3and4,anditstor-queistransmittedtocompressor5.Whenclutch6ofcom-pressor5works,therotarymotionofthemotoristransformedtothereciprocatingmotion.Itcompressesthecoolantinthecompressorwhosepressureiscontrolledbyanelectromagneticvalve7.Condenser9coolsthecool-ant,andliquidtank10separatestheliquidfromthevaporandsoonlytheliquidcoolantissuppliedtoevaporator11.Evaporator11getstheheat,andthecoolantfluidbecomesgasduetotheevaporation.Thiscycleisrepeated,andtheairtemperaturedecreasesaroundtheevaporator.Inthesystem,althoughthetemperaturedecreases,thehumidityincreases.Bothtemperatureandhumidityareofimpor-tanceformakingcomfortableatmosphere,andsothecooledairisheatedintheusualairconditionertohavelowhumidityair.Inthesystem,althoughthehumiditydecreases,itscontrolisnotperfect,becauseitisdifficulttocontrolthehumidityinthesystem.Inaddition,sincethecooledairisheated,thetemperatureofairshouldbecooledundertherequiredtemperature.Thismeansthattheenergylosswillbelarge.Adesiccantisappropriateforhavingdryair,becausethedesiccantrotorworksunderlowtemperature,andsothepresentarticleusesdesiccantrotor14asshowninFig.1.Tohavethesamehumidityintheexperiment,humidifier15supplieshumidairtotheexperiment.Itisnotrequiredintherealairconditionerofcourse.2.2.ElementsusedinthesystemIntheabove-mentionedsystem,temperature–humiditysensor13detectsthetemperatureandthehumidityattheblowoutpointoftheairconditioner,torquemeter2detectsthetorqueofthecompressorshaft,andsignalsofthoseareinputtoDigitalsignalprocessor19(DSP19).Usingthesesignals,DSP19calculatestheappropriatecon-trolvoltageoftheelectromagneticvalveinthecompressorasmentionedbelow.Theelementsusedinthissystemare.asfollows:(1)Electromagneticclutch6.Clutch6allowson–offcontrolofthetransmissioncon-nectionbetweenthedrivingshaftofthemotorandthecompressorshaft.Thisisalsousedasasafetydevice,cut-tingthetransmissionwhencondenser9freezes.Whenthetemperatureincreases,itmakesaconnectionofthetrans-missionagain.(2)Evaporatorfan12.Evaporatorfan12coolstheevaporator,andsotheevaporationincreaseswhenthefanspeedsincreases.Tocomparethepresentsystemandaconventionalsystem,theexperimentalconditionsshouldbethesame,andsotheexperimentismadeintheconstantfanspeed.(3)Desiccant14.Since,thelowconstantspeedisdesirableforthedesic-cantrotorforhavingenoughefficiencyasmentionedinRefs.[13,14],on–offcontrolisutilizedforthedesiccantrotor.Fig.2showsthecomparisonofaconventionalsys-tem(Fig.2(a))andthepresentsystem(Fig.2(b)).Intheconventionalsystem,sincethesuctionairiscooledbytheevaporator,andreheatedbyaheatercore,cooledandlowhumidityairflowsinthecarroom.Inthiscase,thetemperatureofcooledairhastobesignificantlysmallerthanthedesiredtemperaturebecauseofreheating.Thismeansthatthestrongovercoolingisrequiredinthecon-ventionalsystem.While,inoursystem,dryairfromthedesiccantismixedtothesuctionair,andsocooledandlowhumidityairiscreated.Althoughthetemperatureofdryairfromthedesiccantisslightlylargerthanthedesiredtemperature,thetemperatureofcooledairisclosetothedesiredtemperature.Thisenablestheenergylossduetoovercoolingsmallinoursystem.Fig.3showsthegeometryofthedesiccantrotorinwhichthesilicagelisinstalled.Moisturesofsuctionairareabsorbedinsilicagelwhentheairpassesthroughthedesiccatearea,anddryairflowsout.Wetairflowsoutwhentherotorrotatesattherepro-ductionarea,wheretheheatedairflowsinthewetsilicagel,becausethemoistureinthegelflowsoutunderheatedaircreatedbyaheater.Aircoolsthegelwhentheheatedregionisrotatedintotherecoveryregion.Repeatingthiscycle,dryaircanbeobtainedfromtherotor.Thedesiccantusedinthisexperimentisasfollows:flowrate=100m3/h,andmoistureabsorbingcapacity=350g/h.Fig.4depictsherelationbetweentheabsolutehumidityafterprocessionandsuctionabsolutehumidityforthisdesiccant.Theeffectsofthedesiccantandthehumidifieronthetem-peratureandhumidityarefirstinvestigated.Whenonlythedesiccantworks,thetemperatureconvergestoabout31℃,andwhenonlythehumidifierworks,thetemperalsocon-vergesabout31℃.Whenboththedesiccantandhumidifierwork,thetemperatureconvergesabout34℃.Asfortheuntil5%.Thehumidityofthehumidifieriscontrolled,anditcreateshumidityuntil60%.Thesettlingtimeforboththetemperatureandthehumiditywereabout180s.Inordertodrythesilicagelinthedesiccantrotor,thissystemusesanelectricheater.Recently,amethodofusingengineheatisdiscussedforhavingdryairinsteadofusingtheheater.Inthepresentsystem,althoughatubesupply-ingtheheatfromaradiatortothesilicagelrotorisrequired,themethodisalsoapplicable,sotheenergyduetotheheaterisnotrequiredinsuchsystem.(4)Electromagneticvalve7incompressor5.Sincearealtimecontrolofthetemperatureisrequiredinthissystem,thecompressorwithanelectromagneticvalveisappropriate.Theelectromagneticvalvecontrolsaninclinationoftheplatewithpistonsforaplate–pistontypecompressor,inwhichpistontheelectromagneticvalvecontrolsstrokes.ThecompressorusedinthisexperimentisMLA6167AmadebyCalsonicCo.Ltd,whichisusedinausualautomobileairconditioner.Theperformancetestwascarriedoutforthiscompres-sorundernon-control.Fig.5(a)showsthetemperaturever-sustimeforthreecasesofelectromagneticvalvevoltages(0,6and12V).Thetestwasmadecontinuously,andsothevalueat600sisthesameastheinitialvalueofthenextcase.Whenthereisnoinputvoltagetothevalve,thetemperaturedecreaseswithtime.Thismeansthatthecom-pressorworkswithoutvalvecontrol.Thetemperaturedecreaseswhenthevalvevoltageincreasesasshownincurvesfor6Vand12V.Theresultof12Visshownasthespecialcase,becausethetemperatureunderthefreezingpointisnotusedintheairconditioner.Fromthefigure,thecapacityofthecompressorisenoughFig.5(b)showsthehumidity(relativehumidity)versustimeinthreevoltages.Thehumidityincreasesandsatu-ratesincaseof0Vvalvevoltage.Intheothertwocases,thehumiditydecreases,thenincreasesandsaturatesasshowninthecurvesinFig.5(b).Althoughthereareafewdifferencesinthecases,therelativehumidityincreases,ingeneral,becauseofdecreasingtemperature.Inordertodecreasethehumidity,wetairisdriedbytheheatercoreorbymixingheatedairfromtheengineinconventionalsystems.Thecombinationcontrolsofheatingandfanspeedarealsoused,butitisdifficulttocontrolbothtem-peratureandhumidityinthesystemsimultaneously.Inthepresentarticle,tohaveaprecisecontrol,theelectro-magneticvalveinthecompressorcontrolstemperature,andthedesiccantrotorcontrolshumidity.(5)Heatercore.Tohavethecharacteristicoftheconventionalsystem,aheater-corewithcapacityof1200Wwasalsoused.Itwaslaidattheblowoutpointoftheairconditioner,andon–offcontrolisused.Inthepresentsystem,theheaterisnotrequiredofcourse.3.Temperatureandhumiditycontrolforthepresentsystem4.ComparisonbetweenenergiesforthepresentsystemandtheconventionalsystemSince,theconventionalsystemreheatstheairforobtaininglowhumidityair,alargeovercoolingisrequired.Theovercoolingconsumestheenergyinthecompressor.Inthepresentsystem,usingthedesiccant,theovercoolingissig

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論