四川省資陽(yáng)市樂(lè)至縣2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第1頁(yè)
四川省資陽(yáng)市樂(lè)至縣2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第2頁(yè)
四川省資陽(yáng)市樂(lè)至縣2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第3頁(yè)
四川省資陽(yáng)市樂(lè)至縣2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第4頁(yè)
四川省資陽(yáng)市樂(lè)至縣2022-2023學(xué)年中考數(shù)學(xué)押題卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是().A. B. C. D.2.如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)C為圓心,大于AC長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M,N,作直線MN分別交BC,AC于點(diǎn)D,E,若AE=3cm,△ABD的周長(zhǎng)為13cm,則△ABC的周長(zhǎng)為()A.16cm B.19cm C.22cm D.25cm3.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒(méi)有用鋼筋,也沒(méi)有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m4.四根長(zhǎng)度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個(gè)三角形,則().A.組成的三角形中周長(zhǎng)最小為9 B.組成的三角形中周長(zhǎng)最小為10C.組成的三角形中周長(zhǎng)最大為19 D.組成的三角形中周長(zhǎng)最大為165.如圖,在菱形ABCD中,E是AC的中點(diǎn),EF∥CB,交AB于點(diǎn)F,如果EF=3,那么菱形ABCD的周長(zhǎng)為()A.24 B.18 C.12 D.96.如圖所示,若將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1O,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A1點(diǎn)的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)7.根據(jù)如圖所示的程序計(jì)算函數(shù)y的值,若輸入的x值是4或7時(shí),輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣78.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長(zhǎng)為半徑畫(huà)一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.9.如圖1是某生活小區(qū)的音樂(lè)噴泉,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,其中一個(gè)噴水管?chē)娝淖畲蟾叨葹?m,此時(shí)距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.10.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點(diǎn)的個(gè)數(shù)是()A.0個(gè) B.1個(gè)或2個(gè)C.0個(gè)、1個(gè)或2個(gè) D.只有1個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在某公益活動(dòng)中,小明對(duì)本年級(jí)同學(xué)的捐款情況進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的不完整的統(tǒng)計(jì)圖,其中捐10元的人數(shù)占年級(jí)總?cè)藬?shù)的25%,則本次捐款20元的人數(shù)為_(kāi)_____人.12.如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過(guò)的面積為(m2﹣n2)π,則=______13.化簡(jiǎn):=_____.14.如圖,在四邊形ABCD中,AC、BD是對(duì)角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,則線段BC的長(zhǎng)是_____.15.如圖,AB是⊙O的直徑,且經(jīng)過(guò)弦CD的中點(diǎn)H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線,切點(diǎn)為F.若∠ACF=65°,則∠E=.16.某廣場(chǎng)要做一個(gè)由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個(gè)頂點(diǎn))有n(n>1)盆花,設(shè)這個(gè)花壇邊上的花盆的總數(shù)為S,請(qǐng)觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.三、解答題(共8題,共72分)17.(8分)如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求證:△ABD是等邊三角形;(2)若BD=3,求⊙O的半徑.18.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是AB延長(zhǎng)線上的點(diǎn),CD與⊙O相切于點(diǎn)D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫(xiě)出AC的長(zhǎng).19.(8分)如圖,已知A(3,0),B(0,﹣1),連接AB,過(guò)B點(diǎn)作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點(diǎn)坐標(biāo);如圖2,若P點(diǎn)從A點(diǎn)出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點(diǎn)P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點(diǎn)共線,求此時(shí)∠APB的度數(shù)及P點(diǎn)坐標(biāo).20.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對(duì)稱(chēng)軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積最大,若存在,求出點(diǎn)F的坐標(biāo)和最大值;若不存在,請(qǐng)說(shuō)明理由;(3)平行于DE的一條動(dòng)直線l與直線BC相較于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo).21.(8分)如圖,在△ABC中,∠C=90°,E是BC上一點(diǎn),ED⊥AB,垂足為D.求證:△ABC∽△EBD.22.(10分)從廣州去某市,可乘坐普通列車(chē)或高鐵,已知高鐵的行駛路程是400千米,普通列車(chē)的行駛路程是高鐵的行駛路程的1.3倍.求普通列車(chē)的行駛路程;若高鐵的平均速度(千米/時(shí))是普通列車(chē)平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車(chē)所需時(shí)間縮短3小時(shí),求高鐵的平均速度.23.(12分)計(jì)算:(﹣1)4﹣2tan60°+.24.計(jì)算:+2〡6tan30

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:作點(diǎn)P關(guān)于OA對(duì)稱(chēng)的點(diǎn)P3,作點(diǎn)P關(guān)于OB對(duì)稱(chēng)的點(diǎn)P3,連接P3P3,與OA交于點(diǎn)M,與OB交于點(diǎn)N,此時(shí)△PMN的周長(zhǎng)最?。删€段垂直平分線性質(zhì)可得出△PMN的周長(zhǎng)就是P3P3的長(zhǎng),∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點(diǎn):3.線段垂直平分線性質(zhì);3.軸對(duì)稱(chēng)作圖.2、B【解析】

根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質(zhì)進(jìn)行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長(zhǎng)=AB+BD+BC+AC=13+6=19cm,故選B.【點(diǎn)睛】本題考查作圖-基本作圖,線段的垂直平分線的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握線段的垂直平分線的性質(zhì).3、C【解析】連結(jié)OA,如圖所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.4、D【解析】

首先寫(xiě)出所有的組合情況,再進(jìn)一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個(gè)三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時(shí),其周長(zhǎng)為3+4+1=13;②當(dāng)x=4時(shí),周長(zhǎng)最小為3+4+4=11,周長(zhǎng)最大為4+1+4=14;③當(dāng)x=5時(shí),周長(zhǎng)最小為3+4+5=12,周長(zhǎng)最大為4+1+5=15;④若x=1時(shí),周長(zhǎng)最小為3+4+1=13,周長(zhǎng)最大為4+1+1=11;綜上所述,三角形周長(zhǎng)最小為11,最大為11,故選:D.【點(diǎn)睛】本題考查的是三角形三邊關(guān)系,利用了分類(lèi)討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.5、A【解析】【分析】易得BC長(zhǎng)為EF長(zhǎng)的2倍,那么菱形ABCD的周長(zhǎng)=4BC問(wèn)題得解.【詳解】∵E是AC中點(diǎn),∵EF∥BC,交AB于點(diǎn)F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長(zhǎng)是4×6=24,故選A.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì)及菱形的周長(zhǎng)公式,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.6、A【解析】

由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱(chēng),根據(jù)圖象確定點(diǎn)A的坐標(biāo),即可求得點(diǎn)A1的坐標(biāo).【詳解】由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱(chēng),∵點(diǎn)A的坐標(biāo)是(﹣3,2),∴點(diǎn)A關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)A'點(diǎn)的坐標(biāo)是(3,﹣2).故選A.【點(diǎn)睛】本題考查了中心對(duì)稱(chēng)的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)的坐標(biāo)的特征,熟知中心對(duì)稱(chēng)的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)的坐標(biāo)的特征是解決問(wèn)題的關(guān)鍵.7、C【解析】

先求出x=7時(shí)y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當(dāng)x=7時(shí),y=6-7=-1,∴當(dāng)x=4時(shí),y=2×4+b=-1,解得:b=-9,故選C.【點(diǎn)睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計(jì)算方法.8、C【解析】分析:求出扇形的圓心角以及半徑即可解決問(wèn)題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.9、D【解析】

根據(jù)圖象可設(shè)二次函數(shù)的頂點(diǎn)式,再將點(diǎn)(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點(diǎn)為(1,3)∴,將點(diǎn)(0,0)代入得解得∴故答案為:D.【點(diǎn)睛】本題考查了是根據(jù)實(shí)際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.10、C【解析】

根據(jù)題意,利用分類(lèi)討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點(diǎn)的個(gè)數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域,開(kāi)口向下,∴當(dāng)頂點(diǎn)D位于直線y=﹣1下方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為0,當(dāng)頂點(diǎn)D位于直線y=﹣1上時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為1,當(dāng)頂點(diǎn)D位于直線y=﹣1上方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為2,故選C.【點(diǎn)睛】考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類(lèi)討論的數(shù)學(xué)思想解答.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、35【解析】分析:根據(jù)捐款10元的人數(shù)占總?cè)藬?shù)25%可得捐款總?cè)藬?shù),將總?cè)藬?shù)減去其余各組人數(shù)可得答案.詳解:根據(jù)題意可知,本年級(jí)捐款捐款的同學(xué)一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖.計(jì)算出捐款總?cè)藬?shù)是解決問(wèn)題的關(guān)鍵.12、【解析】

先確定線段BC過(guò)的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.【詳解】如圖,連接OB、OC,以O(shè)為圓心,OC為半徑畫(huà)圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過(guò)的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過(guò)O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點(diǎn)睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過(guò)的面積是解題的關(guān)鍵,是一道中等難度的題目.13、【解析】

先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點(diǎn)睛】此題考查分式的混合運(yùn)算,掌握運(yùn)算法則是解題關(guān)鍵14、6【解析】

作DE⊥AB,交BA的延長(zhǎng)線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據(jù)tan∠BAC=∠DAE=DEAE=33【詳解】如圖:作DE⊥AB,交BA的延長(zhǎng)線于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴設(shè)AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【點(diǎn)睛】本題是解直角三角形問(wèn)題,恰當(dāng)?shù)貥?gòu)建輔助線是本題的關(guān)鍵,利用三角形全等證明邊相等,并借助同角的三角函數(shù)值求線段的長(zhǎng),與勾股定理相結(jié)合,依次求出各邊的長(zhǎng)即可.15、50°.【解析】

解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點(diǎn)∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.16、S=1n-1【解析】觀察可得,n=2時(shí),S=1;

n=3時(shí),S=1+(3-2)×1=12;

n=4時(shí),S=1+(4-2)×1=18;

…;

所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.

故答案為S=1n-1.【點(diǎn)睛】本題是一道找規(guī)律的題目,這類(lèi)題型在中考中經(jīng)常出現(xiàn).對(duì)于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.三、解答題(共8題,共72分)17、(1)詳見(jiàn)解析;(2).【解析】

(1)因?yàn)锳C平分∠BCD,∠BCD=120°,根據(jù)角平分線的定義得:∠ACD=∠ACB=60°,根據(jù)同弧所對(duì)的圓周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根據(jù)三個(gè)角是60°的三角形是等邊三角形得△ABD是等邊三角形.(2)作直徑DE,連結(jié)BE,由于△ABD是等邊三角形,則∠BAD=60°,由同弧所對(duì)的圓周角相等,得∠BED=∠BAD=60°.根據(jù)直徑所對(duì)的圓周角是直角得,∠EBD=90°,則∠EDB=30°,進(jìn)而得到DE=2BE.設(shè)EB=x,則ED=2x,根據(jù)勾股定理列方程求解即可.【詳解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圓周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等邊三角形;(2)連接OB、OD,作OH⊥BD于H,則DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半徑為.【點(diǎn)睛】本題是一道圓的簡(jiǎn)單證明題,以圓的內(nèi)接四邊形為背景,圓的內(nèi)接四邊形的對(duì)角互補(bǔ),在圓中往往通過(guò)連結(jié)直徑構(gòu)造直角三角形,再通過(guò)三角函數(shù)或勾股定理來(lái)求解線段的長(zhǎng)度.18、(1)詳見(jiàn)解析;(2)1+【解析】

(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對(duì)的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點(diǎn)D,是的直徑,即(2)解:在中,.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)圓的認(rèn)識(shí),熟練掌握?qǐng)A的性質(zhì)是解題的關(guān)鍵.19、(1)C(1,-4).(2)證明見(jiàn)解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點(diǎn)坐標(biāo);(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點(diǎn)共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點(diǎn)坐標(biāo).【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點(diǎn)坐標(biāo)為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當(dāng)C、P,Q三點(diǎn)共線時(shí),∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點(diǎn)坐標(biāo)為(1,0).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.20、(1)、y=-+x+4;(2)、不存在,理由見(jiàn)解析.【解析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點(diǎn)C和點(diǎn)A意見(jiàn)對(duì)稱(chēng)軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來(lái)進(jìn)行證明,假設(shè)存在這樣的點(diǎn),然后設(shè)出點(diǎn)F的坐標(biāo)求出FH和FG的長(zhǎng)度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無(wú)解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過(guò)點(diǎn)C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過(guò)點(diǎn)A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設(shè)存在滿(mǎn)足條件的點(diǎn)F,如圖所示,連結(jié)BF、CF、OF,過(guò)點(diǎn)F作FH⊥x軸于點(diǎn)H,F(xiàn)G⊥y軸于點(diǎn)G.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論