版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
97/97
AcademicYear:(2012/2013)
Enrolmentnumber:12014664
Fullname:SijunWu
Course:BEngHonorsDegreeinElectricaland
ElectronicEngineering
ProjectTitle:Real-TimeComputerLevelControlofaWaterTank
1stSupervisor:GuopingLiu
2ndSupervisor:DrMikePrice
Date:April2013
Real-TimeComputerLevelControlofaWaterTank
Student:SijunWu
ID:12014664
Date:April2013
UniversityofGlamorgan
DissertationsubmittedinpartialfulfillmentfortheBEnginElectricalandElectronicEngineering.
FacultyofAdvancedTechnology
Declaration
Iunderstandthenatureofplagiarism,andIamawareoftheUniversity’spolicyonthis.
Ideclarethatthisdissertationistheresultofmyownindependentinvestigationandthatallsourceshavebeenappropriatelyacknowledgedinthebibliography.
Signature:Date:
Abstract
Withthedevelopmentofthetimes,Controlsystemisplayinganincreasinglyimportantroleinvariousfields.Watertankcontrolsystemisatypicalmodelofcontrolsystem.Controlofwatertankcanbeusedasthebasisofresearchintomorecomplexnonlinearsystem,Itnotonlyhasastrongtheoretical,belongstotheapplicationofbasicresearch,butalsoitwithstrongcomprehensive.Itcontainscontroltheory,intelligentcontrol,fluidmechanics,andotherdisciplines.
People'slifeandindustrialproduction,andmanyotherareasofteninvolveliquidlevelandflowcontrolproblem,forexampleinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.Sotheliquidheightisanimportantparameteroftheindustrialprocesscontrol,especiallyinadynamicstate.Byusingsuitablemethodstodetecttheliquidlevelcancontrolitcanreceivegoodeffect.
Inthisfinalprojectdesign,Idutyistodesignawatertankliquidlevelcontrolsystem,whichinvolvesthedynamicliquidlevelcontrol,themodelingofthecontrolsystem,PIDparameterssetting.Iwilldiscussusingdifferentcontrolmethodstoachievecontrolrequire,forinstance,Proportionalcontroller,PIcontroller.Iwilldiscussbothdesignprocessesandtestresultsinthispaper.WhatmoreIwillintroducesomemainsoftwarewhichincludesMATLAB,SIMULINK,andNetConSystems.
Keywords:positioncontrol,PIcontroller,PIDparameterssetting,software
Acknowledgement
Firstofall,Iwantappreciatemyfirstsupervisorandsecondsupervisor.Icouldnotachievemyprojectwithouttheirhelp.EspeciallyprofessorGuopingLiu,hegivesmegreatsupport.Whensomequestionsreallyconfuseme,healwaysfillsofpatientandanswerforme.Heencouragesmeandteachesmehowtosolvetheproblems.Henotonlyteachesmeknowledgebutalsocreativemyabilityofresearchtheessentialoftheproblem.Nomatterinthetheoreticalknowledgeandpracticaltest.
SecondlyIwanttoappreciatetheUniversityofGlamorgan.Theygivemeopportunitytolearnthetheorywiththerealapplication.
ThirdlyIwanttosaythankstoBeijingUniversityofCivilEngineeringandArchitecturewhereIusedtostudy.TheygavemethechancetostudyintheUniversityofGlamorgannow.Iwanttoappreciatemyteacherinchina,especiallyprofessorZhijianJiang.
AtlastIwanttosaythanktoanypeoplewhosupportme.Especiallythankstomyparentsandmyfriends.
AllofyouareveryimportantformeandIreallyappreciatethehelpthatyougavemeinthiswholeyear.
content
Abstract
4
Acknowledgement
5
content
6
Figurelist
9
Chapter1.ProjectOverview
11
1.1 AimandObjectives:
11
1.2GeneralBackground:
11
1.2.1Singlewater-tanksystem
11
1.2.2Couplewater-tanksystem
12
Chapter2.SoftwareIntroduction
14
2.1MATLABIntroduction
14
2.2Simulinkintroduction
16
2.3NetConSystem
17
2.3.2NetConLink
18
2.3.3NetConTop
19
Chapter3.HardwareIntroduction
20
3.1Coupled-tanksystemdescription
20
3.2Componentnomenclature
21
3.3componentdescription
22
3.3.1Overallframeandwatertanks
22
3.3.2Pump
22
3.3.3Pressuresensor
22
3.4Coupled-tankmodelparameters
22
Chapter4.Theoryandmathematicalmodel
25
4.1Mathematicalmodel
25
4.2Mathematicalmodeloftheupperwatertank
25
4.2.1Upperwatertanklevelmodelingnonlinearequationofmotion
25
4.2.2Upperwatertanklevelmodelinglinearizationandsystemtransferfunction
28
4.3Mathematicalmodelofthecouplewatertank
31
4.3.1Couplewatertanklevelmodelingnonlinearequationofmotion
31
4.3.2Couplewatertanklevelmodelinglinearizationandsystemtransferfunction
33
Chapter5.IntroductionofcontrolsystemsandControllerDesign
37
5.1Introductionofcontrolsystems
37
5.2Upperwatertankwaterlevelcontrollerdesign
38
5.2.1UpperwatertankwaterlevelP-plus-feedforwardcontroller
38
5.2.2UpperwatertankwaterlevelPI-plus-feedforwardcontroller
42
5.2.3UpperwatertankwaterlevelCascadeandfeedbackcontroller
46
5.3Couplewatertankwaterlevelcontrollerdesign
48
5.3.1TheInstructionsforthecascadesystem.
48
5.3.2CouplewatertankwaterlevelPI-plus-feedforwardcontroller
49
Chapter6.Thesimulationofthesystemcontroller
52
6.1Thesimulationofupperwatercontroller
52
6.1.1SimulationofProportionalcontroller
52
6.1.2Simulationofproportionalintegralcontroller
54
6.1.3Simulationofcascadeandfeedbackcontroller
55
6.2Thesimulationofcouplewatertankcontroller
57
Chapter7.Actualexperimentaloperationandtestresults
61
7.1TheInstructionsforactualexperimental
61
7.1.1TheInstructionsforthedigitaltoanalogandanalogtodigitalconversion
61
7.1.2TheInstructionsforusingNetConSystemNetConLinkandNetConTop
62
7.1.3Waterlevelsensorcalibration
64
7.14look-uptable
65
7.1.5Limitvoltageprotectionsystem
66
7.2Experimentalresultsandanalysisoftheupperwatertank
67
7.2.1ExperimentalresultsofP-plus-feedforwardcontroller
67
7.2.2ExperimentalresultsofPI-plus-feedforwardcontroller
69
7.2.3Experimentalresultsofcascadeandfeedbackcontroller
71
7.3Experimentalresultsandanalysisofthecouplewatertank
73
Chapter8.Mistakeanalysis
76
Chapter9.Conclusions
77
Chapter10.FutureWork
78
Reference
79
Appendix1
80
Appendix2
97
Figurelist
Figure1.IllustratingtheAnalogy
Figure2.SchematicoftheCoupled-Tankplant
Figure3TheoverallNetConsystem
Figure4NetController
Figure5InterfaceofNetConLink
Figure6UserInterfaceofNetConTopsoftware
Figure7Coupled-tankModel
Figure8Coupled-tankComponent
Figure9Upperwatertanklevelmodel
Figure10Theopen-looptransferfunctionoftheupperwatertank
Figure11couplewatertanklevelmodel
Figure12Theopen-looptransferfunctionofcouplewatertank
Figure13Open-loopcontrolsystem
Figure14Close-loopcontrolsystem
Figure15P-plus-feedforwardclose-loopcontrolsystem
Figure16Stepresponseofafirstordersystem-timeconstant
Figure17PI-plus-feedforwardclose-loopcontrolsystem
Figure18Cascadeandfeedbackcontrolsystem
Figure19Theblockofwholesystem
Figure20Cascadesystem
Figure21TheblockdiagramofCouplewatertankwaterlevelPI-plus-feedforward
Controlsystem
Figure22TheblockdiagramofProportionalcontroller
Figure23TheblockdiagramofProportionalintegralcontroller
Figure24TheblockdiagramofProportionalcontroller
Figure25TheblockdiagramofcouplewatertankPIcontroller
Figure26Thesystemamplitudeoscillationcurve
Figure27couplewatertankPIcontrollersimulationresults
Figure28Digital-to-analogandanalog-to-digitalconverter
Figure29NetConset
Figure30NetConset
Figure31NetConset
Figure32NetConset
Figure33NetConTopset
Figure34NetConTopset
Figure35Calibrationmodel
Figure36Calibrationcircuitboard
Figure37Saturationblock
Figure38Saturationset
Figure39Proportionalcontrolsystemblockdiagram
Figure40P-plus-feedforwardcontrollerexperimentresult1
Figure41P-plus-feedforwardcontrollerexperimentresult2
Figure42PI-plus-feedforwardcontrolsystemblockdiagram
Figure43PI-plus-feedforwardcontrollerexperimentresult1
Figure44PI-plus-feedforwardcontrollerexperimentresult2
Figure45PI-plus-feedforwardcontrollerexperimentresult3
Figure46Cascadeandfeedbackcontrolsystemblockdiagram
Figure47Cascadeandfeedbackcontrollerexperimentresult1
Figure48Cascadeandfeedbackcontrollerexperimentresult2
Figure49Cascadeandfeedbackcontrollerexperimentresult3
Figure50CouplewatertankPI-plus-feedforwardcontrolsystemblockdiagram.
Figure51CouplewatertankPI-plus-feedforwardcontrollerexperimentresult1
Figure52CouplewatertankPI-plus-feedforwardcontrollerexperimentresult2
Figure53CouplewatertankPI-plus-feedforwardcontrollerexperimentresult3
Figure54CouplewatertankPI-plus-feedforwardcontrollerexperimentresult4
Chapter1.ProjectOverview
AimandObjectives:
Theaimoftheproject:
Thekeyaimoftheprojectistoapplyvariouscontrolstrategiestoreal-timelevelcontrolofawatertankusingcomputers.
Theobjectivesoftheprojectinclude:
Understandthelevelcontrolproblemofawatertank;
Studyclassandadvancecontrolmethods,e.g.,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol,etc.
Befamiliarwiththefollowingsoftware:Matlab,Simulink,Real-TimeWorkship,NetConSystem;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)inSimulinkforclosed-looplevelcontrolbasedonthemodelofawatertank;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)ontheNetConSystemforreal-timeclose-looplevelcontrol,basedonthemodelofawatertank;
Applythesimulatedcontrolstrategiestoapracticallevelcontroltestrig.
1.2GeneralBackground:
1.2.1Singlewater-tanksystem
NowdayinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.
Amodelofsinglewater-tankisshowasthefigureonebelow.V1iswaterdrainvalve.V2istheinletvalve.Theliquidlevelofthecontrolrequirementish0.Thewaterflow,whichdrainintothetankiscontrolledbyV2valve,waterflow,whichdrainsoutofthetank,iscontrolledbyV1valve.TheV1openlibraryischangewiththeneedsofusers.Asaconsequencetocontrolthevariablevalueofthewaterlevelh0itistransfertocontroltheWaterinflow.Inisexperimenttoachievecontroltheinletflowbyusingchangethevoltagewhichisdriventhepump.
Figure1.IllustratingtheAnalogy
1.2.2Couplewater-tanksystem
Coupletankwaterisatypicalmodelofnonlineardelayobjects,muchofthecontrolledobjectinindustrialwholeorpartialcanbeabstractedasmathematicsmodelofdoublewatertank.Ithasstrongrepresentationandstrongindustrialbackground.Inindustrialproductionthemathematicalmodelingandcontrolstrategyofcouplewatertankhastheguidingsignificanceinresearchofliquidlevelcontrolsystem.Suchasindustrialboilers,moldlevelcontrol.
Asisshowedbelowthefigure2isthecouplewatertank.Theexperimentsrequireiscontrolthebottomtankwaterlevelfromthewaterflowcomingoutofthetoptank.
Figure2.SchematicoftheCoupled-Tankplant[1]
Tobemorespecific,thesetabovetwoexperimentalsequencesareaimedat:
HowtomathematicallymodeltheCoupled-Tankfromfirstprinciplesinordertoobtainthetwoopen-looptransferfunctionscharacterizingthesystem,intheLaplacedomain.
Howtolinearizetheobtainednon-linearequationofmotionaboutthequiescentpointofoperation.
Howtodesign,thoughpoleplacement,aproportional-plus-integral-plus-feedforward-basedcontrollerfortheCoupled-Tanksysteminorderforittomeettherequireddesignspecificationsforeachconfiguration.
Howtoimplementeachconfigurationcontrollerinreal-timeandevaluatetheiractualperformance.
Chapter2.SoftwareIntroduction
2.1MATLABIntroduction
MATLABisaprogrammingenvironmentforalgorithmdevelopment,dataanalysis,visualization,andnumericalcomputation.UsingMATLAB,youcansolvetechnicalcomputingproblemsfasterthanwithtraditionalprogramminglanguages,suchasC,C++,andFORTRAN.
YoucanuseMATLABinawiderangeofapplications,includingsignalandimageprocessing,communications,controldesign,testandmeasurement,financialmodelingandanalysis,andcomputationalbiology.Foramillionengineersandscientistsinindustryandacademia,MATLABisthelanguageoftechnicalcomputing[2].
KeyFeatures:
High-levellanguagefortechnicalcomputing
Developmentenvironmentformanagingcode,files,anddata
Interactivetoolsforiterativeexploration,design,andproblemsolving
Mathematicalfunctionsforlinearalgebra,statistics,Fourieranalysis,filtering,optimization,andnumericalintegration
2-Dand3-Dgraphicsfunctionsforvisualizingdata
Toolsforbuildingcustomgraphicaluserinterfaces
FunctionsforintegratingMATLABbasedalgorithmswithexternalapplicationsandlanguages,suchasC,C++,Fortran,Java?,COM,andMicrosoftExcel
MATLABcanbeusedinfollowingworks:
(1).Creatingtransferfunctions
Atransferfunctioncanbeexpressedasanumeratorpolynomialdividedbyadenominatorpolynomial,thatis,F(s)=N(s)/D(s).Thenumerator,N(s),isrepresentedbyarowvector,numf,thecontainsthecoefficientsofN(s).Similarly,thedenominator,D(s),isrepresentedbyarowvector,denf,thatcontainsthecoefficientsofD(s).WeformF(s)withthecommand,F=tf(numf,denf).Fiscalledalineartime-invariant(LTI)object,ortransferfunction,canbeusedasanentityinotheroperations,suchasadditionormultiplication.
(2)Timeresponse
WecanuseMATLABtocalculatecharacteristicsofasecondordersystem,suchasdampingratio,;naturalfrequency;percentovershoot,%OS;settlingtime,Ts;andpeaktime,Tp.
(3)Stability
MATLABcansolveforthepolesofatransferfunctioninordertodeterminestability.Also,wecanuseMATLABtofindtherangeofgainforstabilitybygeneratingaloop,changinggain,andfindingatwhatgainweobtainright-half-planepoles.
(4)Steady-stateerror
Staticerrorconstantsarefoundusingas.Oncethestaticerrorconstantisfound,wecanevaluatethesteady-stateerror.
(5)Rootlocustechniques
MATLABallowsrootlocitobeplottedwiththerlocus(GH)command.Pointsontherootlocuscanbeselectedinteractivelyusingthe‘rlocfind’command.MATLABthenyieldsthegain(K)atthatpointaswellasallotherpoles(p)thathavethatgain.Wecanzoominandoutoftherootlocusbychangingtherangeofaxisvalues.Therootlocuscanbedrawnoveragridthatshowsconstantdampingratio()andconstantnaturalfrequency()
(6)FrequencyResponseTechniques
WecanuseMATLABtomakeBodeplotsusingbode(G),whereG/(s)=numg/dengandGisanLTItransferfunctionobject.Also,wecanuseMATLABtomakeNyquistdiagramsusingNyquist(G)[2].
2.2Simulinkintroduction
SIMULINKisanenvironmentformultidomainsimulationandModel-BasedDesignfordynamicandembeddedsystems.Itprovidesaninteractivegraphicalenvironmentandacustomizablesetofblocklibrariesthatletyoudesign,simulate,implement,andtestavarietyoftime-varyingsystems,includingcommunications,controls,signalprocessing,videoprocessing,andimageprocessing.
Add-onproductsextendSIMULINKsoftware
tomultiplemodelingdomains,aswellasprovidetoolsfordesign,implementation,andverificationandvalidationtasks.
SIMULINKisintegratedwithMATLAB,providingimmediateaccesstoanextensiverangeoftoolsthatletyoudevelopalgorithms,analyzeandvisualizesimulations,createbatchprocessingscripts,customizethemodelingenvironment,anddefinesignal,parameter,andtestdata[3].
KeyFeatures
Extensiveandexpandablelibrariesofpredefinedblocks
Interactivegraphicaleditorforassemblingandmanagingintuitiveblockdiagrams
Abilitytomanagecomplexdesignsbysegmentingmodelsintohierarchiesofdesigncomponents
ModelExplorertonavigate,create,configure,andsearchallsignals,parameters,properties,andgeneratedcodeassociatedwithyourmodel
Applicationprogramminginterfaces(APIs)thatletyouconnectwithothersimulationprogramsandincorporatehand-writtencode
MATLAB
FunctionblocksforbringingMATLABalgorithmsintoSIMULINKandembeddedsystemimplementations
Simulationmodes(Normal,Accelerator,andRapidAccelerator)forrunningsimulationsinterpretivelyoratcompiledC-codespeedsusingfixed-orvariable-stepsolvers
Graphicaldebuggerandprofilertoexaminesimulationresultsandthendiagnoseperformanceandunexpectedbehaviorinyourdesign
FullaccesstoMATLABforanalyzingandvisualizingresults,customizingthemodelingenvironment,anddefiningsignal,parameter,andtestdata
Modelanalysisanddiagnosticstoolstoensuremodelconsistencyandidentifymodelingerrors
2.3NetConSystem
TheNetCon(NetworkedControl)systemisaplatformforteachingandresearchofreal-timecontrolsystemsthroughIntranet/Internet.Itconsistsofthreehardwareandsoftwareparts:NetController,NetConLinkandNetConTop.Classic,modernandadvancedcontrolmethodscaneasilybeimplementedforreal-timecontrolusingtheNetConsystem,whichisbasedonthevisualconfigurationtechnology.[4]
Figure3.TheoverallNetConsystem[4]
2.3.1NetController
NetControlleristhefront-endexecutionunitsofNetConsystem,runningspecificcontrolalgorithms.NetControllerthroughthenetworkinterfacereceivesthemonitoringandcontrolparametersandcontrolcommandfromconfigurationplatform,andcontrolthereal-timerunningstateanduploadedtothemonitoringobjectconfigurationplatform.Itisbasedon32-bitARMmicroprocessor,whichishighperformance,lowpowerconsumption.Itrunningembeddedreal-timeoperatingsystemanduseindustry-specificmodulardesign,providemoreroadinput/outputinterfacestandards,suchasA/DandD/A,PWM,digitalI/O,etc,andalsoprovidesLCDdisplayoutput.Comparedwiththetraditionalfront-endcontroller,networkcontrollerhashigherspeedandlargeraddressingcapability,coupledwithmulti-taskingandreal-timeembeddedoperatingsystemitcancompletelyguaranteethesmoothrunningofcomplexcontrolalgorithms.
Figure4.NetController[4]
2.3.2NetConLink
Networkvisualcontrolconfigurationsoftware(NetConLink)isbasedonMatlab/SimulinkanditcanachieveseamlessandSIMULINKcombined.FirstlyUserscanusevariousmodulesandcustomizationoftheS-functionsystemfunction,whichisprovidingbySimulink.Secondlyusinggraphicalwaytocreatemodelofcontrollerandcontrolledobject.Thencontrolstrategyistestedmanytimesforthewholecontrolsystemoftheofflineandonlineinordertoverifythefeasibility.AfterthatcodeisgeneratedandautomaticallycanbedownloadedintoNetControllerbyNetConLinkinafewseconds.NetConLinkprovideshardwaredrivermoduleandnetworkcontroltoolbox,andprovidetheinterfaceforNetConTop.
Figure5.InterfaceofNetConLink[4]
2.3.3NetConTop
Networkvisualmonitoringconfigurationsoftware(NetConTop)isbasedonWindowsoperatingsystemanditisusedtogeneratecomputinggraphicalmonitoringprogramconfigurationsoftwaredevelopmentplatform.Itprovidesacompleteprogramofsolvingengineeringmonitoringproblems.Userscaneasilydesignvisualmonitorinterface.Itoffersavarietyofstandardconfigurationcontrol,suchasthegraph,instrument,theinputbox,andsupporttheclient/serverarchitecture.Itsmainfunctionsinclude:NetConcontrollerreal-timedataacquisitionandmanagement,real-timemonitoring,commissioningandmanagement.
Figure6.UserInterfaceofNetConTopsoftware[4]
Chapter3.HardwareIntroduction
3.1Coupled-tanksystemdescription
Figure7.Coupled-tankModel[1]
TheCoupled-tankplantmoduleisconsistingbyapumpwithawaterbasinandtwotanks.AsshowninFigure7.Thetwotanksarefixedonthepanel.Agearpumpisinstalledatthebottomofthepanel.Thepumpcanthruststhewaterfromthewaterreservoir,whichisundertheCouple-tanks,throughthehoseaffluxintotheuppertank,suchthatflowfromtheuppertankcandrainthroughanoutletorifice,whichislocatedatthebottomoftheuppertank,intothelowertank.Flowfromthelowertankflowsintothemainwaterreservoir.Ineachoneofthetwotanks,liquidiswithdrawnfromthebottomthroughanoutfloworifice.Theoutletpressureisatmospheric.Inordertointroduceadisturbanceflowtheuppertankisalsoequippedwithadraintapsothatwhenopen,flowcanbedraindirectlyintothewaterreservoir.Foreachwaterstankwecanseeastaffgaugeattachbesidethetanktodisplaytherealtimewaterlevel.TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevelandgivefeedbacksignal.
3.2Componentnomenclature
Coupled-TankOverFrame
UpperTank
LowerTank
MainWaterBasin
Pump
FlexibleTubing
Quick-ConnectInletOrificeOut1
Quick-ConnectInletOrificeOut2
Quick-ConnectOut1CouplingAndHose
Quick-ConnectOut2CouplingAndHose
SmallOutletInsert
MediumOutletInsert
LargeOutletInsert
PlainOutletInsert
DisturbanceTap
FlowSplitter
PressureSensor
Figure8.Coupled-tankComponent[1]
CalibrationAndSignalConditioningCircuitBoard
PumpMotor4-PinDINConnector
PressureSensorCable6-Pin-MiniDINConnector
TankLevelScale
3.3componentdescription
3.3.1Overallframeandwatertanks
Thecoupled-tankoverallframeandwatertanksaremadeofPlexiglas.Thewatertankshaveuniformcrosssection.[1]
Description
Value
Unit
Overallframeheight
0.915
m
Overallframewidth
0.305
m
Overallframedepth
0.305
m
Form1
3.3.2Pump
TheCoupled-tankpumpisagearpumpcomposedofa12VoltDCmotorwithheatradiatingfins.[1]
3.3.3Pressuresensor
TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevel.Thesensoroutputvoltageincreasesproportionallytotheappliedpressure.ItsoutmeasurementisprocessedthroughaSignalConditioningBoardandmadeavailableas0to5VDCsignal.
3.4Coupled-tankmodelparameters
Symbol
Description
Value
Unit
Kp
PumpFlowConstant
3.3
cm3/S/V
Vp_max
P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PQA-18-生命科學試劑-MCE-3779
- Filiformine-生命科學試劑-MCE-8234
- 11-Hydroxy-9-R-hexahydrocannabinol-生命科學試劑-MCE-8544
- 4-Iso-THC-4-Iso-tetrahydrocannabinol-生命科學試劑-MCE-2807
- 2025年度磚廠承包與市場拓展合作協(xié)議
- 2025年新推出門面房出租管理服務(wù)合同
- 二零二五年度企業(yè)自愿離職合同解除范本及離職補償金計算標準
- 二零二五年度數(shù)字音樂版權(quán)互惠合作合同
- 二零二五年度洗煤廠煤炭洗選技術(shù)租賃合同
- 智能科技與家庭旅游的融合探索
- 2024全國能源行業(yè)火力發(fā)電集控值班員理論知識技能競賽題庫(多選題)
- 公司員工外派協(xié)議書范文
- 信息科技重大版 七年級上冊 互聯(lián)網(wǎng)應用與創(chuàng)新 第二單元教學設(shè)計 互聯(lián)網(wǎng)原理
- 肺栓塞的護理查房完整版
- 手術(shù)患者手術(shù)部位標識制度
- 運輸安全生產(chǎn)知識培訓試卷
- 抖音麗人行業(yè)短視頻直播項目運營策劃方案
- (2024年)知識產(chǎn)權(quán)全套課件(完整)
- 2024-2030年中國城市軌道交通行業(yè)發(fā)展現(xiàn)狀分析及市場供需預測報告
- 預防靜脈血栓疾病知識講座
- 《社區(qū)康復》課件-第十一章 其他疾病的社區(qū)康復實踐
評論
0/150
提交評論