版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山西省陽(yáng)泉市陽(yáng)泉中學(xué)高三5月適應(yīng)性測(cè)試數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分開(kāi)來(lái),每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類(lèi)產(chǎn)品或者檢測(cè)出3件類(lèi)產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為()A. B. C. D.2.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要3.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有如下問(wèn)題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問(wèn),米幾何?”下圖是解決該問(wèn)題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.1004.已知函數(shù),則的最小值為()A. B. C. D.5.下邊程序框圖的算法源于我國(guó)古代的中國(guó)剩余定理.把運(yùn)算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.196.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.7.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.8.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.9.已知復(fù)數(shù),則的虛部為()A. B. C. D.110.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對(duì)滿足題意的任意的的位置,;②對(duì)滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立11.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.12.若復(fù)數(shù)滿足,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.14.能說(shuō)明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.15.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長(zhǎng)為1,若向量、、滿足,則實(shí)數(shù)的值為_(kāi)______.16.如圖是一個(gè)算法流程圖,若輸出的實(shí)數(shù)的值為,則輸入的實(shí)數(shù)的值為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長(zhǎng)為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點(diǎn),且分別與直線和直線相交于點(diǎn)、.試判斷是否為定值,并說(shuō)明理由.18.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.19.(12分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知?jiǎng)訄A恒過(guò)點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在處的切線于點(diǎn),問(wèn):是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說(shuō)明理由.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)當(dāng)時(shí),求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時(shí),若對(duì)一切恒成立,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類(lèi)產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類(lèi)產(chǎn)品的概率,即可得解.【詳解】類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,則第一次檢測(cè)出類(lèi)產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.3、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計(jì)算.【詳解】由題意,.故選:B.【點(diǎn)睛】本題考查程序框圖,讀懂程序的功能是解題關(guān)鍵.4、C【解析】
利用三角恒等變換化簡(jiǎn)三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡(jiǎn)三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.5、B【解析】
由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過(guò)程,代入四個(gè)選項(xiàng)進(jìn)行驗(yàn)證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點(diǎn)睛】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用循環(huán)模擬或代入選項(xiàng)驗(yàn)證的方法進(jìn)行解答.6、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.7、D【解析】試題分析:由,得,則,故選D.考點(diǎn):1、復(fù)數(shù)的運(yùn)算;2、復(fù)數(shù)的模.8、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.9、C【解析】
先將,化簡(jiǎn)轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10、A【解析】
作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過(guò)作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問(wèn)題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.11、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱(chēng),即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)?,其圖象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),∴的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng).可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來(lái)判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.12、D【解析】
把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.14、答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說(shuō)明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點(diǎn)睛】本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.15、【解析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【詳解】由圖可知:,所以,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.16、【解析】
根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進(jìn)行計(jì)算即可.【詳解】解:程序的功能是計(jì)算,若輸出的實(shí)數(shù)的值為,則當(dāng)時(shí),由得,當(dāng)時(shí),由,此時(shí)無(wú)解.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識(shí)別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因?yàn)橹本€與橢圓相切,這有一個(gè)交點(diǎn),聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因?yàn)橹本€分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因?yàn)?所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點(diǎn)睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運(yùn)用,考查橢圓的定值問(wèn)題,考查計(jì)算能力和轉(zhuǎn)化思想,是中檔題.18、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.19、(1);(2)【解析】
(1)將有兩個(gè)零點(diǎn)轉(zhuǎn)化為方程有兩個(gè)相異實(shí)根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問(wèn)題轉(zhuǎn)化為對(duì)一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個(gè)零點(diǎn)關(guān)于的方程有兩個(gè)相異實(shí)根由,知有兩個(gè)零點(diǎn)有兩個(gè)相異實(shí)根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為;(2)當(dāng)時(shí),,原命題等價(jià)于對(duì)一切恒成立對(duì)一切恒成立.令令,,則在上單增又,,使即①當(dāng)時(shí),,當(dāng)時(shí),,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問(wèn)題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.20、(1);(2)存在,.【解析】
(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線的拋物線,則,.∴圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),,則,.因?yàn)辄c(diǎn),,在直線上,所以,,所以,所以.∴故存在,使得.【點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問(wèn)題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.21、(1)(2)當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【解析】
(1)當(dāng)時(shí),分類(lèi)討論把不等式化為等價(jià)不等式組,即可求解.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,分類(lèi)討論,即可求解.【詳解】(1)當(dāng)時(shí),,不等式可化為或或,解得不等式的解集為.(2)由絕對(duì)值的三角不等式,可得,當(dāng)且僅當(dāng)時(shí),取“”,所以當(dāng)時(shí),的取值范圍為;當(dāng)時(shí),的取值范圍為.【點(diǎn)睛】本題主要考查了含絕對(duì)值的不等式的求解,以及絕對(duì)值三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上半年遼寧彰武縣事業(yè)單位招聘高學(xué)歷人才50人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2025年上半年贛州開(kāi)發(fā)區(qū)招考工程技術(shù)人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州黔西南州冊(cè)亨縣事業(yè)單位引進(jìn)人才22人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州銅仁市松桃苗族自治縣事業(yè)單位招聘工作人員50人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州貴陽(yáng)鐵路運(yùn)輸法院信息技術(shù)人員招聘重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2025年上半年貴州省黔西南望謨縣事業(yè)單位招聘(280人)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 濟(jì)南二零二五版二手房買(mǎi)賣(mài)合同簽訂須知3篇
- 2025年上半年貴州省畢節(jié)市旅游集團(tuán)織金洞公司招聘6人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025年上半年貴州畢節(jié)市七星關(guān)區(qū)面向社會(huì)招聘事業(yè)單位工作人員101人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解-1
- 2025年上半年貴州凱里市事業(yè)單位急需緊缺人才引進(jìn)46人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 中醫(yī)診所內(nèi)外部審計(jì)制度
- 自然辯證法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年國(guó)家危險(xiǎn)化學(xué)品經(jīng)營(yíng)單位安全生產(chǎn)考試題庫(kù)(含答案)
- 護(hù)理員技能培訓(xùn)課件
- 家庭年度盤(pán)點(diǎn)模板
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級(jí)認(rèn)證考試近5年真題集錦(頻考類(lèi)試題)帶答案
- 試卷中國(guó)電子學(xué)會(huì)青少年軟件編程等級(jí)考試標(biāo)準(zhǔn)python三級(jí)練習(xí)
- 公益慈善機(jī)構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報(bào)告
- 飼料廠現(xiàn)場(chǎng)管理類(lèi)隱患排查治理清單
- 【名著閱讀】《紅巖》30題(附答案解析)
評(píng)論
0/150
提交評(píng)論