版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.2.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°3.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球,每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后再放回盒子,通過大量重復摸球實驗后發(fā)現,摸到黃球的頻率穩(wěn)定在30%,那么估計盒子中小球的個數n為()A.20 B.24 C.28 D.304.一元二次方程x2+kx﹣3=0的一個根是x=1,則另一個根是()A.3 B.﹣1 C.﹣3 D.﹣25.如圖,點P是以O為圓心,AB為直徑的半圓上的動點,AB=2,設弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數關系的圖象大致是A.B.C.D.6.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應關系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次7.如圖,A,B兩點分別位于一個池塘的兩端,小聰想用繩子測量A,B間的距離,但繩子不夠長,一位同學幫他想了一個主意:先在地上取一個可以直接到達A,B的點C,找到AC,BC的中點D,E,并且測出DE的長為10m,則A,B間的距離為()A.15m B.25m C.30m D.20m8.下列圖形是我國國產品牌汽車的標識,在這些汽車標識中,是中心對稱圖形的是()A. B. C. D.9.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.610.若※是新規(guī)定的某種運算符號,設a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-2二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的解是____.12.分解因式:4ax2-ay2=________________.13.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.14.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.15.甲乙兩人8次射擊的成績如圖所示(單位:環(huán))根據圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)16.若一個多邊形的每一個外角都等于40°,則這個多邊形的內角和是_____.三、解答題(共8題,共72分)17.(8分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.18.(8分)“千年古都,大美西安”.某校數學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據調查結果進行數據整理后繪制出的不完整的統(tǒng)計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B”的學生人數.19.(8分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數量,并繪制了以下統(tǒng)計圖.請根據圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數約為多少.20.(8分)如圖,拋物線y=ax2+bx﹣2經過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.21.(8分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;(1)攪勻后,從中任意取一個球,標號為正數的概率是;(2)攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經過一、二、三象限的概率.22.(10分)如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.求∠CDE的度數;求證:DF是⊙O的切線;若AC=DE,求tan∠ABD的值.23.(12分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據統(tǒng)計圖的信息解決下列問題:本次調查的學生有多少人?補全上面的條形統(tǒng)計圖;扇形統(tǒng)計圖中C對應的中心角度數是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?24.如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.2、C【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.3、D【解析】
試題解析:根據題意得=30%,解得n=30,所以這個不透明的盒子里大約有30個除顏色外其他完全相同的小球.故選D.考點:利用頻率估計概率.4、C【解析】試題分析:根據根與系數的關系可得出兩根的積,即可求得方程的另一根.設m、n是方程x2+kx﹣3=0的兩個實數根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點】根與系數的關系;一元二次方程的解.5、A?!窘馕觥咳鐖D,∵根據三角形面積公式,當一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據勾股定理,得弦AP=x=?!喈攛=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應在y=的一半上方,從而可排除C選項。故選A。6、D【解析】
A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.7、D【解析】
根據三角形的中位線定理即可得到結果.【詳解】解:由題意得AB=2DE=20cm,故選D.【點睛】本題考查的是三角形的中位線,解答本題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.8、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.9、C【解析】
先利用垂直平分線的性質證明BE=CE=8,再在Rt△BED中利用30°角的性質即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質、30°直角三角形的性質,線段的垂直平分線上的點到線段的兩個端點的距離相等.10、C【解析】解:由題意得:,∴,∴x=±1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
分別求出各不等式的解集,再求出其公共解集即可.【詳解】解不等式①,得x>1,
解不等式②,得x≤1,
所以不等式組的解集是1<x≤1,
故答案是:1<x≤1.【點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).12、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、2【解析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.14、(,)【解析】
連接AC,根據題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質,拋物線的頂點式,解此題的關鍵在于熟練掌握其知識點,利用相似三角形的性質求得關鍵點的坐標.15、甲【解析】由圖表明乙這8次成績偏離平均數大,即波動大,而甲這8次成績,分布比較集中,各數據偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.16、【解析】
根據任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數,再根據多邊形的內角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數是:360°÷40°=9,
則內角和是:(9-2)?180°=1260°.
故答案為1260°.【點睛】本題考查正多邊形的外角與邊數的關系,求出多邊形的邊數是解題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)tan∠DBC=.【解析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質得∠AEO=90°,則根據垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計算出AE,則根據正切的定義得到tan∠DAE的值,然后根據圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點睛】垂徑定理及圓周角定理是本題的考點,熟練掌握垂徑定理及圓周角定理是解題的關鍵.18、(1)40;(2)想去D景點的人數是8,圓心角度數是72°;(3)280.【解析】
(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去B景點的人數所占的百分比即可.【詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D景點的人數為40-8-14-4-6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數為280人.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數據的大小,便于比較.也考查了扇形統(tǒng)計圖和利用樣本估計總體.19、(1)100;(2)補圖見解析;(3)570人.【解析】
(1)由讀書1本的人數及其所占百分比可得總人數;(2)總人數乘以讀4本的百分比求得其人數,減去男生人數即可得出女生人數,用讀2本的人數除以總人數可得對應百分比;(3)總人數乘以樣本中讀2本人數所占比例.【詳解】(1)參與問卷調查的學生人數為(8+2)÷10%=100人,故答案為:100;(2)讀4本的女生人數為100×15%﹣10=5人,讀2本人數所占百分比為20+補全圖形如下:(3)估計該校學生一個月閱讀2本課外書的人數約為1500×38%=570人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數解析式,利用二次函數性質求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數式進行合理變形,解決相似三角形問題時要注意分類討論.21、(1);(2)【解析】【分析】(1)直接運用概率的定義求解;(2)根據題意確定k>0,b>0,再通過列表計算概率.【詳解】解:(1)因為1、-1、2三個數中由兩個正數,所以從中任意取一個球,標號為正數的概率是.(2)因為直線y=kx+b經過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經過一、二、三象限的概率是.【點睛】本題考核知識點:求規(guī)概率.解題關鍵:把所有的情況列出,求出要得到的情況的種數,再用公式求出.22、(1)90°;(1)證明見解析;(3)1.【解析】
(1)根據圓周角定理即可得∠CDE的度數;(1)連接DO,根據直角三角形的性質和等腰三角形的性質易證∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切線;(3)根據已知條件易證△CDE∽△ADC,利用相似三角形的性質結合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值即可.【詳解】解:(1)解:∵對角線AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90°;(1)證明:連接DO,∵∠EDC=90°,F是EC的中點,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級歷史上冊第二單元夏商周時期:早期國家與社會變革第5課青銅器與甲骨文同步練習新人教版
- 2024-2025學年高中英語Unit2TheuniversallanguageSectionⅦGuidedWriting學案含解析牛津譯林版選修8
- 玉溪師范學院《管理學》2021-2022學年第一學期期末試卷
- 玉溪師范學院《電力電子技術》2021-2022學年期末試卷
- 玉溪師范學院《導視設計》2023-2024學年第一學期期末試卷
- 2024電力建設工程設計合同范本
- 2024民間借款居間服務合同范本
- 2024年重組抗原診斷試劑合作協議書
- 2024小型房屋建筑合同書樣本
- 2024國有土地買賣合同參考范文
- 集裝箱購銷協議合同范本示例
- 求職面試技巧培訓
- 室內裝修施工安全方案
- 工程詢價合同模板
- 事業(yè)單位招聘《綜合基礎知識》考試試題及答案
- 無錫風機吊裝施工方案
- 《突發(fā)事件應急預案管理辦法》知識培訓
- 江蘇省南京市建鄴區(qū)2024-2025學年九年級上學期期中考試物理試題(無答案)
- 中小學師德師風建設各項制度匯編
- 第九章 職業(yè)健康安全與環(huán)境管理課件
- 2024年保安員證考試題庫及答案(共260題)
評論
0/150
提交評論