版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市東城第50中2023屆高三暑期階段性考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.2.已知實(shí)數(shù),滿足,則的最大值等于()A.2 B. C.4 D.83.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.4.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.5.已知三棱柱()A. B. C. D.6.已知,則()A. B. C. D.27.世紀(jì)產(chǎn)生了著名的“”猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到.如圖是驗(yàn)證“”猜想的一個(gè)程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.8.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.9.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形11.已知雙曲線,點(diǎn)是直線上任意一點(diǎn),若圓與雙曲線的右支沒(méi)有公共點(diǎn),則雙曲線的離心率取值范圍是().A. B. C. D.12.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,則的最大值為______.14.《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為__________.15.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時(shí)間,有7人用時(shí)為6分鐘,有14人用時(shí)7分鐘,有15人用時(shí)為8分鐘,還有4人用時(shí)為10分鐘,則高二(4)班全體同學(xué)用餐平均用時(shí)為____分鐘.16.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.18.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.19.(12分)一個(gè)工廠在某年里連續(xù)10個(gè)月每月產(chǎn)品的總成本(萬(wàn)元)與該月產(chǎn)量(萬(wàn)件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過(guò)畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;(2)①建立月總成本與月產(chǎn)量之間的回歸方程;②通過(guò)建立的關(guān)于的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),產(chǎn)品的總成本為多少萬(wàn)元?(均精確到0.001)附注:①參考數(shù)據(jù):,,,,.②參考公式:相關(guān)系數(shù),,.20.(12分)已知拋物線,過(guò)點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,.(1)求拋物線的方程;(2)當(dāng)以為直徑的圓與軸相切時(shí),求直線的方程.21.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.22.(10分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.(1)證明:平面PNB;(2)問(wèn)棱PA上是否存在一點(diǎn)E,使平面DEM,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡(jiǎn),可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.2、D【解析】
畫出可行域,計(jì)算出原點(diǎn)到可行域上的點(diǎn)的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點(diǎn)到可行域上的點(diǎn)的最大距離為.所以的最大值為.故選:D【點(diǎn)睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.4、A【解析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.5、C【解析】因?yàn)橹比庵校珹B=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過(guò)底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長(zhǎng)即為球直徑,所以2R==13,即R=6、B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.7、C【解析】
列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點(diǎn)睛】本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】
整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實(shí)部為0,虛部不為0,即可求解.【詳解】由題,,因?yàn)榧兲摂?shù),所以,則,故選:D【點(diǎn)睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運(yùn)算.9、D【解析】
利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說(shuō)明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過(guò)正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.11、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒(méi)有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點(diǎn),則直線與直線的距離,∵圓與雙曲線的右支沒(méi)有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒(méi)有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過(guò)點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.14、【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時(shí),△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時(shí),取“=”,此時(shí)△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時(shí)考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.15、7.5【解析】
分別求出所有人用時(shí)總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點(diǎn)睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯(cuò)點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯(cuò).16、【解析】
根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【點(diǎn)睛】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見(jiàn)二級(jí)結(jié)論,此題可以簡(jiǎn)化計(jì)算.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)10【解析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.18、(1)證明見(jiàn)解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.19、(1)見(jiàn)解析;(2)①②3.386(萬(wàn)元)【解析】
(1)利用代入數(shù)值,求出后即可得解;(2)①計(jì)算出、后,利用求出后即可得解;②把代入線性回歸方程,計(jì)算即可得解.【詳解】(1)由已知條件得,,∴,說(shuō)明與正相關(guān),且相關(guān)性很強(qiáng).(2)①由已知求得,,所以,所求回歸直線方程為.②當(dāng)時(shí),(萬(wàn)元),此時(shí)產(chǎn)品的總成本約為3.386萬(wàn)元.【點(diǎn)睛】本題考查了相關(guān)系數(shù)的應(yīng)用以及線性回歸方程的求解和應(yīng)用,考查了計(jì)算能力,屬于中檔題.20、(1);(2)或【解析】試題分析:本題主要考查拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的相交問(wèn)題、直線與圓相切問(wèn)題等基礎(chǔ)知識(shí),同時(shí)考查考生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、運(yùn)算求解能力以及數(shù)形結(jié)合思想.第一問(wèn),設(shè)出直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理得到y(tǒng)1+y2,y1y2,,代入到中解出P的值;第二問(wèn),結(jié)合第一問(wèn)的過(guò)程,利用兩種方法求出的長(zhǎng),聯(lián)立解出m的值,從而得到直線的方程.試題解析:(Ⅰ)設(shè)l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)設(shè)A(x1,y1),B(x2,y2),則y1+y2=2pm,y1y2=4p,則.因?yàn)?,所以x1x2+y1y2=12,即4+4p=12,得p=2,拋物線的方程為y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化為y2-4my+2=1.y1+y2=4m,y1y2=2.…6分設(shè)AB的中點(diǎn)為M,則|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高二物理期末模擬卷【測(cè)試范圍:滬科版2020必修三+選擇性必修第二冊(cè)第五章】(考試版A3)
- 預(yù)防中風(fēng)課件
- 運(yùn)營(yíng)服務(wù)培訓(xùn)課件
- 輪胎分裝培訓(xùn)課件
- 小學(xué)生勵(lì)志課件
- 抗菌藥物專項(xiàng)培訓(xùn)課件
- 新人教版-七年級(jí)美術(shù)下冊(cè)教案(全冊(cè))
- 飲食與安全課件
- 2021年歷年中醫(yī)執(zhí)業(yè)醫(yī)師考試真題及答案
- 乒乓步法培訓(xùn)課件
- 2024年南京市第一醫(yī)院分院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 鄧州市龍理鄉(xiāng)第一初級(jí)中學(xué)-2025年春節(jié)寒假跨學(xué)科主題實(shí)踐作業(yè)模板【課件】
- 電力改造電力安裝施工合同
- (新疆一模)2025屆高三高考適應(yīng)性檢測(cè)分學(xué)科第一次模擬考試 生物試卷(含答案解析)
- 【大學(xué)課件】文物數(shù)字化技術(shù)及數(shù)字化文物系統(tǒng)初探
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷03-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 2024年中央經(jīng)濟(jì)工作會(huì)議精神解讀
- 熱電站汽輪機(jī)發(fā)電安全操作規(guī)程(2篇)
- 2025年中考物理復(fù)習(xí)資料專題18 生活用電(知識(shí)梳理+典例+練習(xí))(原卷版)
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(jí)(上)期末歷史試卷
- 公司安全事故隱患內(nèi)部舉報(bào)、報(bào)告獎(jiǎng)勵(lì)制度
評(píng)論
0/150
提交評(píng)論