版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省永春三中2023屆普通高中高三調(diào)研測(cè)試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.62.函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為()A. B. C. D.3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.4.已知集合,,則()A. B. C. D.5.已知角的終邊經(jīng)過(guò)點(diǎn),則A. B.C. D.6.已知集合(),若集合,且對(duì)任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.7.已知復(fù)數(shù),則的虛部為()A. B. C. D.18.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.639.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.10.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.211.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.12.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正實(shí)數(shù)滿足,則的最小值為.14.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.15.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為_(kāi)_____.16.函數(shù)的圖象在處的切線方程為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)中的內(nèi)角,,的對(duì)邊分別是,,,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.18.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在軸上,為坐標(biāo)原點(diǎn),且滿足,經(jīng)過(guò)點(diǎn)且垂直于軸的直線與拋物線交于、兩點(diǎn),且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點(diǎn),若,求點(diǎn)到直線的最大距離.19.(12分)十八大以來(lái),黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國(guó)家對(duì)“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級(jí)財(cái)政提高了對(duì)“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報(bào)銷的比例,其中門(mén)診報(bào)銷比例如下:表1:新農(nóng)合門(mén)診報(bào)銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門(mén)診報(bào)銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),李村一個(gè)結(jié)算年度門(mén)診就診人次情況如下:表2:李村一個(gè)結(jié)算年度門(mén)診就診情況統(tǒng)計(jì)表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個(gè)結(jié)算年度內(nèi)各門(mén)診就診人次占李村總就診人次的比例70%10%15%5%如果一個(gè)結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門(mén)診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個(gè)結(jié)算年度內(nèi)去門(mén)診就診人次為2000人次.(Ⅰ)李村在這個(gè)結(jié)算年度內(nèi)去三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門(mén)診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個(gè)結(jié)算年度內(nèi)門(mén)診就診人次占全村總就診人次的比例視為概率,求李村這個(gè)結(jié)算年度每人次用于門(mén)診實(shí)付費(fèi)用(報(bào)銷后個(gè)人應(yīng)承擔(dān)部分)的分布列與期望.20.(12分)在銳角中,分別是角的對(duì)邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.21.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個(gè)實(shí)數(shù)根,且,證明:.22.(10分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.(1)求和的極坐標(biāo)方程;(2)過(guò)且傾斜角為的直線與交于點(diǎn),與交于另一點(diǎn),若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.2、D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍遥远x域關(guān)于原點(diǎn)對(duì)稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,故選D.3、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.4、B【解析】
求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,則,即.故選D.6、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因?yàn)?,,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.7、C【解析】
先將,化簡(jiǎn)轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點(diǎn)代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點(diǎn)睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.11、B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.12、C【解析】根據(jù)命題的否定,可以寫(xiě)出:,所以選C.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.14、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15、【解析】
易知,設(shè),,利用絕對(duì)值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對(duì)值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.16、【解析】
利用導(dǎo)數(shù)的幾何意義,對(duì)求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡(jiǎn)即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問(wèn)題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡(jiǎn)得,,解得或(負(fù)值舍去),,,,,,的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運(yùn)算能力,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)求得點(diǎn)的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實(shí)數(shù)的值,進(jìn)而可得出拋物線的方程;(2)設(shè)點(diǎn),,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合求得的值,可得出直線所過(guò)定點(diǎn)的坐標(biāo),由此可得出點(diǎn)到直線的最大距離.【詳解】(1)易知點(diǎn),又,所以點(diǎn),則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點(diǎn),,則,所以.所以,解得.所以直線的方程為,恒過(guò)點(diǎn).又點(diǎn),故當(dāng)直線與軸垂直時(shí),點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查拋物線方程的求解,同時(shí)也考查了拋物線中最值問(wèn)題的求解,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.19、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個(gè)門(mén)診的人次比例可得2000人中各個(gè)門(mén)診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;(Ⅱ)由去各門(mén)診結(jié)算的平均費(fèi)用及表1所報(bào)的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個(gè)結(jié)算年度內(nèi)去門(mén)診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門(mén)診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門(mén)診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機(jī)變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【點(diǎn)睛】本題主要考查互斥事件、隨機(jī)事件的概率計(jì)算公式、分布列及其數(shù)學(xué)期望、組合計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.20、(1);(2)【解析】
(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡(jiǎn)求得,進(jìn)而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡(jiǎn)函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域?yàn)椋军c(diǎn)睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問(wèn)題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡(jiǎn)求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識(shí).21、(Ⅰ);(Ⅱ);(Ⅲ)證明見(jiàn)解析【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點(diǎn)處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時(shí),此時(shí),且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因?yàn)?,故設(shè)的解為,因?yàn)?故.所以在遞減,在遞增.因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年超額保險(xiǎn)合同賠付限制
- 2025版城市更新改造項(xiàng)目投標(biāo)承諾書(shū)規(guī)范范本3篇
- 2025版木雕工藝品制作木工分包合同范本4篇
- 2025版企業(yè)銷售業(yè)務(wù)員合作協(xié)議范本3篇
- 2025年度豬圈建造與農(nóng)業(yè)循環(huán)經(jīng)濟(jì)合同4篇
- 二零二五版電影院裝修升級(jí)合同范本3篇
- 2025版學(xué)校教師聘用合同范本:職稱晉升條款詳解3篇
- 2025年度體育場(chǎng)館草坪鋪設(shè)與維護(hù)服務(wù)合同4篇
- 2025年度貨車司機(jī)勞動(dòng)合同(附交通事故責(zé)任及賠償)
- 2025年度智能科技股權(quán)眾籌協(xié)議書(shū)模板
- 高考語(yǔ)文復(fù)習(xí)【知識(shí)精研】《千里江山圖》高考真題說(shuō)題課件
- 河北省承德市2023-2024學(xué)年高一上學(xué)期期末物理試卷(含答案)
- 高中物理斜面模型大全(80個(gè))
- 012主要研究者(PI)職責(zé)藥物臨床試驗(yàn)機(jī)構(gòu)GCP SOP
- 農(nóng)耕研學(xué)活動(dòng)方案種小麥
- 2024年佛山市勞動(dòng)合同條例
- 污水管網(wǎng)規(guī)劃建設(shè)方案
- 城鎮(zhèn)智慧排水系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 采購(gòu)管理制度及流程采購(gòu)管理制度及流程
- 五年級(jí)美術(shù)下冊(cè)第9課《寫(xiě)意蔬果》-優(yōu)秀課件4人教版
- 節(jié)能降耗課件
評(píng)論
0/150
提交評(píng)論