數(shù)據(jù)、模型與決策(運籌學)課后習題和案例答案004_第1頁
數(shù)據(jù)、模型與決策(運籌學)課后習題和案例答案004_第2頁
數(shù)據(jù)、模型與決策(運籌學)課后習題和案例答案004_第3頁
數(shù)據(jù)、模型與決策(運籌學)課后習題和案例答案004_第4頁
數(shù)據(jù)、模型與決策(運籌學)課后習題和案例答案004_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

4-

PAGE

10

4-

PAGE

9

Chapter4

linearprogramming:formulationandapplications

ReviewQuestions

4.1-1 Determinewhichlevelsshouldbechosenofdifferentadvertisingmediatoobtainthemosteffectiveadvertisingmixforthenewcereal.

4.1-2 Theexpectednumberofexposures.

4.1-3 TVcommercialsarenotbeingusedandthatistheprimarymethodofreachingyoungchildren.

4.1-4 Theyneedtochecktheassumptionthatfractionalsolutionsareallowedandtheassumptionofproportionality.

4.2-1 Eachfunctionalconstraintinthelinearprogrammingmodelisaresourceconstraint.

4.2-2 Amountofresourceused≤Amountofresourceavailable.

4.2-3 1) Theamountavailableofeachlimitedresource.

2) Theamountofeachresourceneededbyeachactivity.Specifically,foreachcombinationofresourceandactivity,theamountofresourceusedperunitofactivitymustbeestimated.

3) Thecontributionperunitofeachactivitytotheoverallmeasureofperformance.

4.2-4 Thethreeactivitiesintheexamplesaredeterminingthemostprofitablemixofproductionratesfortwonewproducts,capitalbudgeting,andchoosingthemixofadvertisingmedia.

4.2-5 Theresourcesintheexamplesareavailableproductioncapacitiesofdifferentplants,cumulativeinvestmentcapitalavailablebycertaintimes,financialallocationsforadvertisingandforplanningpurposes,andTVcommercialspotsavailableforpurchase.

4.3-1 Forresource-allocationproblems,limitsaresetontheuseofvariousresources,andthentheobjectiveistomakethemosteffectiveuseofthesegivenresources.Forcost-benefit-tradeoffproblems,managementtakesamoreaggressivestance,prescribingwhatbenefitsmustbeachievedbytheactivitiesunderconsideration,andthentheobjectiveistoachieveallthesebenefitswithminimumcost.

4.3-2 Theidentifyingfeatureforacost-benefit-tradeoffproblemisthateachfunctionalconstraintisabenefitconstraint.

4.3-3 Levelachieved≥Minimumacceptablelevel.

4.3-4 1) Theminimumacceptablelevelforeachbenefit(amanagerialpolicydecision).

2) Foreachbenefit,thecontributionofeachactivitytothatbenefit(perunitoftheactivity).

3) Thecostperunitofeachactivity.

4.3-5 Theactivitiesfortheexamplesarechoosingthemixofadvertisingmedia,personnelscheduling,andcontrollingairpollution.

4.3-6 Thebenefitsfortheexamplesareincreasedmarketshare,minimizingtotalpersonnelcostswhilemeetingservicerequirements,andreductionsintheemissionofpollutants.

4.4-1 Distribution-networkproblemsdealwiththedistributionofgoodsthroughadistributionnetworkatminimumcost.

4.4-2 Anidentifyingfeatureforadistribution-networkproblemisthateachfunctionalconstraintisafixed-requirementconstraint.

4.4-3 Incontrasttothe≤formforresourceconstraintsandthe≥formforbenefitconstraints,fixed-requirementconstraintshavean=form.

4.4-4 Factory1mustship12lathes,Factory2mustship15lathes,Customer1mustreceive10lathes,Customer2mustreceive8lathes,andCustomer3mustreceive9lathes.

4.5-1 Twonewgoalsneedtobeincorporatedintothemodel.Thefirstisthattheadvertisingshouldbeseenbyatleast5millionyoungchildren.Thesecondisthattheadvertisingshouldbeseenbyatleast5millionparentsofyoungchildren.

4.5-2 Twobenefitconstraintsandafixed-requirementconstraintareincludedinthenewlinearprogrammingmodel.

4.5-3 Managementdecidedtoadoptthenewplanbecauseitdoesamuchbetterjobofmeetingallofmanagement’sgoalsforthecampaign.

4.6-1 Mixedproblemsmaycontainallthreetypesoffunctionalconstraints:resourceconstraints,benefitconstraints,andfixed-requirementconstraints.

4.6-2 TheSave-ItCblemisanexampleofablendingproblemwheretheobjectiveistofindthebestblendofingredientsintofinalproductstomeetcertainspecifications.

4.7-1 Alinearprogrammingmodelmustaccuratelyreflectthemanagerialviewoftheproblem.

4.7-2 Largelinearprogrammingmodelsgenerallyareformulatedbymanagementscienceteams.

4.7-3 Thelineofcommunicationbetweenthemanagementscienceteamandthemanagerisvital.

4.7-4 Modelvalidationisatestingprocessusedonaninitialversionofamodeltoidentifytheerrorsandomissionsthatinevitablyoccurwhenconstructinglargemodels.

4.7-5 Theprocessofmodelenrichmentinvolvesbeginningwitharelativelysimpleversionofthemodelandthenusingtheexperiencegainedwiththismodeltoevolvetowardmoreelaboratemodelsthatmorenearlyreflectthecomplexityoftherealproblem.

4.7-6 What-ifanalysisisanimportantpartofalinearprogrammingstudybecauseanoptimalsolutioncanonlybesolvedforwithrespecttoonespecificversionofthemodelatatime.Managementmayhave“what-if”questionsabouthowthesolutionwillchangegivenchangesinthemodelformulation.

4.8-1 ThePonderosaproblemfallsintothemixedproblemcategory.TheUnitedAirlinesproblemisbasicallyacost-benefit-tradeoffproblem.TheCitgoproblemisadistribution-networkproblem.

4.8-2 ThePonderosaproblemhas90decisionvariables,theUnitedAirlinesproblemhasover20,000decisionvariables,andtheCitgoproblemhasabout15,000decisionvariables.

4.8-3 TwofactorshelpedmakethePonderosaapplicationsuccessful.Oneisthattheyimplementedafinancialplanningsystemwithanatural-languageuserinterface,withtheoptimizationcodesoperatinginthebackground.Theothersuccessfactorwasthattheoptimizationsystemusedwasinteractive.

4.8-4 ThemostimportantsuccessfactorintheUnitedAirlinesapplicationwasthesupportofoperationalmanagersandtheirstaffs.

4.8-5 ThefactorsthathelpedmaketheCitgoapplicationsuccessfulweredevelopingoutputreportsinthelanguageofmanagerstomeettheirneeds,using“what-if”analysis,thesupportofoperationalmanagers,and,mostimportantly,theunlimitedsupportprovidedthemanagementsciencetaskforcebytopmanagement.

Problems

4.1 a)

Datacells: B2:E2,B6:E7,H6:H7,B13,andD13

Changingcells: B11:E11

Targetcell: H11

b) Thisisalinearprogrammingmodelbecausethedecisionsarerepresentedbychangingcellsthatcanhaveanyvaluethatsatisfytheconstraints.Eachconstrainthasanoutputcellontheleft,amathematicalsigninthemiddle,andadatacellontheright.Theoveralllevelofperformanceisrepresentedbythetargetcellandtheobjectiveistomaximizethatcell.Also,theExcelequationforeachoutputcellisexpressedasaSUMPRODUCTfunctionwhereeachterminthesumistheproductofadatacellandachangingcell.

c) Let T=numberofcommercialsonTV

M=numberofadvertisementsinmagazines

R=numberofcommercialsonradio

S=numberofadvertisementsinSundaysupplements.

MaximizeExposures(thousands)=140T+60M+90R+50S

subjectto 300T+150M+200R+100S≤4,000($thousands)

90T+30M+50R+40S≤1,000($thousands)

T≤5spots

R≤10spots

and T≥0,M≥0,R≥0,S≥0.

4.2 a&c)

b)

(x1,x2)

Feasible?

TotalContribution

(2,2)

Yes

$100

(3,3)

Yes

$150

(2,4)

Yes

$160

Best

(4,2)

Yes

$140

(3,4)

No

(4,3)

No

d) Let x1=levelofactivity1

x2=levelofactivity2

MaximizeContribution=$20x1+$30x2

subjectto 2x1+x2≤10

3x1+3x2≤20

2x1+4x2≤

20

and x1≥0,x2≥0.

e) OptimalSolution:(x1,x2)=(3.333,3.333)andTotalContribution=$166.67.

4.3 a)

b) Let x1=levelofactivity1

x2=levelofactivity2

x3=levelofactivity3

MaximizeContribution=$50x1+$40x2+$70x3

subjectto 30x1+20x2≤

500

10x2+40x3≤600

20x1+20x2+30x3≤

1,000

and x1≥

0,x2≥

0,x3≥

0.

4.4 a&c)

b) Belowarefivepossibleguesses(manyanswersarepossible).

(x1,x2,x3,x4)

Feasible?

P

(30,30,30,30)

Yes

$1110

(40,40,40,40)

No

(35,39,30,40)

Yes

$1336

(35,39,34,40)

Yes

$1368

(37,39,35,40)

Yes

$1398

Best

4.5 a) Theactivitiesaretheproductionratesofproducts1,2,and3.Thelimitedresourcesarehoursavailableperweekonthemillingmachine,lathe,andgrinder.

b) Thedecisionstobemadearehowmanyofeachproductshouldbeproducedperweek.Theconstraintsonthesedecisionsarethenumberofhoursavailableperweekonthemillingmachine,lathe,andgrinderaswellasthesalespotentialofproduct3.Theoverallmeasureofperformanceistotalprofit,whichistobemaximized.

c) millingmachine: 9(#unitsof1)+3(#unitsof2)+5(#unitsof3)≤500

lathe: 5(#unitsof1)+4(#unitsof2)≤350

grinder: 3(#unitsof1)+2(#unitsof3)≤150

sales: (#unitsof3)≤20

Nonnegativity: (#unitsof1)≥0,(#unitsof2)≥0,(#unitsof3)≥0

Profit=$50(#unitsof1)+$20(#unitsof2)+$25(#unitsof3)

d)

Datacells: B2:D2,B5:D7,G5:G7,andD12

Changingcells: B10:D10

Targetcell: G10

Outputcells: E5:E7

e) Let x1=unitsofproduct1producedperweek

x2=unitsofproduct2producedperweek

x3=unitsofproduct3producedperweek

MaximizeProfit=$50x1+$20x2+$25x3

subjectto 9x13x2+5x3≤500hours

5x1+4x2≤350hours

3x1+2x3≤150hours

x3≤20

and x1≥

0,x2≥

0,x3≥

0.

4.6 a) TheactivitiesaretheproductionquantitiesofpartsA,B,andC.Thelimitedresourcesarethehoursavailableonmachine1andmachine2.

b&d)

c) Belowarethreepossibleguesses(manyanswersarepossible).

(x1,x2,x3)

Feasible?

P

(500,500,300)

No

(350,1000,0)

Yes

$57,500

(400,1000,0)

Yes

$60,000

Best

e) Let A=numberofpartAproduced

B=numberofpartBproduced

C=numberofpartCproduced

MaximizeProfit=$50A+$40B+$30C

subjectto 0.02A+0.03B+0.05C≤

40hours

0.05A+0.02B+0.04C≤

40hours

and A≥0,B≥

0,C≥

0.

4.7

4.8 a&c)

b)

(x1,x2)

Feasible?

C

(7,7)

No

(7,8)

No

(8,7)

No

(8,8)

Yes

$880

Best

(8,9)

Yes

$930

(9,8)

Yes

$940

d) Let x1=levelofactivity1

x2=levelofactivity2

MinimizeCost=$60x1+$50x2

subjectto 5x1+3x2≥60

2x1+2x2≥30

7x1+9x2≥126

and x1≥0,x2≥0.

e) OptimalSolution:(x1,x2)=(6.75,8.75)andTotalCost=$842.50.

4.9 a&c)

b) Belowarefivepossibleguesses(manyanswersarepossible).

(x1,x2,x3,x4)

Feasible?

C

(32,4,0,6)

No

(33,4,0,6)

Yes

$17,400

Best

(33,5,0,6)

No

(33,4,1,6)

Yes

$17,900

(33,4,1,7)

Yes

$18,200

4.10 a&d)

b) (x1,x2,x3)=(1,2,2)isafeasiblesolutionwithadailycostof$3.48.Thisdietwillprovide210kgofcarbohydrates,310kgofprotein,and170kgofvitaminsdaily.

c) Answerswillvary.

e) Let C=kgofcorntofeedeachpig

T=kgoftankagetofeedeachpig

A=kgofalfalfatofeedeachpig

MinimizeCost=$0.84C+$0.72T+$0.60A

subjectto 90C+20T+40A≥200

30C+80T+40A≥

180

10C+20T+60A≥150

and C≥0,T≥0,A≥0.

4.11 a&d)

c) (x1,x2,x3)=(100,100,200)isafeasiblesolution.Thiswouldgenerate$400millionin5years,$300millionin10years,and$550millionin20years.Thetotalinvestedwillbe$400million.

d) Answerswillvary.

f) Let x1=unitsofAsset1purchased

x2=unitsofAsset2purchased

x3=unitsofAsset3purchased

MinimizeCost=x1+x2+x3($millions)

subjectto 2x1+x2+0.5x3≥400($millions)

0.5x1+0.5x2+x3≥100($millions)

1.5x2+2x3≥300($millions)

and x1≥

0,x2≥0,x3≥0.

4.12 a) Theactivitiesareleasingspaceineachmonthforanumberofmonths.Thebenefitismeetingthespacerequirementsforeachmonth.

b) Thedecisionstobemadearehowmuchspacetoleaseandforhowmanymonths.Theconstraintsonthesedecisionsaretheminimumrequiredspace.Theoverallmeasureofperformanceiscostwhichistobeminimized.

c) Month1:(M11molease)+(M12molease)+(M13molease)+(M14molease)+(M15molease)≥30,000squarefeet.

Month2:(M12molease)+M13molease)+(M14molease)+(M15molease)+(M21molease)+(M22molease)+(M23molease)+(M24molease)≥20,000squarefeet.

Month3:(M13molease)+(M14molease)+(M15molease)+(M22molease)+(M23molease)+(M24molease)+(M31molease)+(M32molease)+(M33molease)≥40,000squarefeet.

Month4:(M14molease)+(M15molease)+(M23molease)+(M24molease)+(M32molease)+(M33molease)+(M41molease)+(M42molease)≥10,000squarefeet.

Month5:(M15molease)+(M24molease)+(M33molease)+(M42molease)+(M51molease)≥50,000squarefeet.

Nonnegativity:(M11molease)≥0,(M12molease)≥0,(M13molease)≥

0,(M14molease)≥0,(M15molease)≥0,(M21molease)≥0,(M22molease)≥0,(M23molease)≥0,(M24molease)≥0,(M31molease)≥0,(M32molease)≥0,(M33molease)≥0,(M41molease)≥0,(M42molease)≥0,(M51molease)≥

0.

Cost=($650)[(M11molease)+(M21molease)+(M31molease)+(M41molease)+(M51molease)]+($1,000)[(M12molease)+(M22molease)+(M32molease)+(M42molease)]+($1,350)[(M13molease)+(M23molease)+(M33molease)]+($1,600)[(M14molease)+(M24molease)]+($1,900)[M15molease]

d)

Datacells: B4:P8,B10:P10,andS4:S8

Changingcells: B13:P13

Targetcell: S13

Outputcells: Q4:Q8

e) Letxij=squarefeetofspaceleasedinmonthiforaperiodofjmonths.

fori=1,...,5andj=1,...,6-i.

MinimizeC=$650(x11+x21+x31+x41+x51)+$1,000(x12+x22+x32+x42)

+$1,350(x13+x23+x33)+$1,600(x14+x24)+$1,900x15

subjectto x11+x12+x13+x14+x15≥30,000squarefeet

x12+x13+x14+x15+x21+x22+x23+x24≥20,000squarefeet

x13+x14+x15+x22+x23+x24+x31+x32+x33≥40,000sq.feet

x14+x15+x23+x24+x32+x33+x41+x42≥10,000squarefeet

x15+x24+x33+x42+x51≥50,000squarefeet

and xij≥

0,fori=1,...,5andj=1,...,6-i.

4.13

4.14 a) Thisisacost-benefit-tradeoffproblembecauseitasksyoutomeetminimumrequiredbenefitlevels(numberofconsultantsworkingeachtimeperiod)atminimumcost.

b)

c) Let f1=numberoffull-timeconsultantsworkingthemorningshift(8a.m.-4p.m.),

f2=numberoffull-timeconsultantsworkingtheafternoonshift(12p.m.-8p.m.),

f3=numberoffull-timeconsultantsworkingtheeveningshift(4p.m.-midnight),

p1=numberofpart-timeconsultantsworkingthefirstshift(8a.m.-12p.m.),

p2=numberofpart-timeconsultantsworkingthesecondshift(12p.m.-4p.m.),

p3=numberofpart-timeconsultantsworkingthethirdshift(4p.m.-8p.m.),

p4=numberofpart-timeconsultantsworkingthefourthshift(8p.m.-midnight).

MinimizeC=($14/hour)(8hours)(f1+f2+f3)+($5/hour)(4hours)(p1+p2+p3+p4)

subjectto f1+p1≥

6

f1+f2+p2≥8

f2+f3+p3≥

12

f3+p4≥6

f1≥2p1

f1+f2≥2p2

f2+f3≥2p3

f3≥

2p4

and f1≥

0,f2≥

0,f3≥

0,p1≥0,p2≥

0,p3≥

0,p4≥

0.

4.15 a) Thisisadistribution-networkproblembecauseitdealswiththedistributionofgoodsthroughadistributionnetworkatminimumcost.

b)

c) Let xij=numberofunitstoshipfromFactoryitoCustomerj(i=1,2;j=1,2,3)

MinimizeCost=$600x11+$800x12+$700x13+$400x21+$900x22+$600x23

subjectto x11+x12+x13=400

x21+x22+x23=500

x11+x21=300

x12+x22=200

x13+x23=400

and x11≥

0,x12≥0,x13≥0,x21≥

0,x22≥0,x23≥

0.

4.16 a) Requirement1:ThetotalamountshippedfromMine1mustbe40tons.

Requirement2:ThetotalamountshippedfromMine2mustbe60tons.

Requirement3:ThetotalamountshippedtothePlantmustbe100tons.

Requirement4:ForStorage1,theamountshippedout=theamountin.

Requirement5:ForStorage2,theamountshippedout=theamountin.

b)

c) Let xM1S1=numberofunitsshippedfromMine1toStorage1

xM1S2=numberofunitsshippedfromMine1toStorage2

xM2S1=numberofunitsshippedfromMine2toStorage1

xM2S2=numberofunitsshippedfromMine2toStorage2

xS1P=numberofunitsshippedfromStorage1tothePlant

xS2P=numberofunitsshippedfromStorage2tothePlant

MinimizeCost=$2,000xM1S1+$1,700xM1S2+$1,600xM2S1+$1,100xM2S2

+$400xS1P+$800xS2P

subjectto xM1S1+xM1S2=40

xM2S1+xM2S2=60

xM1S1+xM2S1=xS1P

xM1S2+xM2S2=xS2P

xS1P+xS2P=100

xM1S1≤

30,xM1S2≤

30,xM2S1≤

50,xM2S2≤50,xS1P≤

70,xS2P≤

70

and xM1S1≥

0,xM1S2≥

0,xM2S1≥

0,xM2S2≥

0,xS1P≥

0,xS2P≥

0.

4.17 a) A1+B1+R1=$60,000

A2+B2+C2+R2=R1

A3+B3+R3=R2+1.40A1

A4+R4=R3+1.40A2+1.70B1

A5+D5+R5=R4+1.40A3+1.70B2

b) Let At=amountinvestedininvestmentAatthebeginningofyeart.

Bt=amountinvestedininvestmentBatthebeginningofyeart.

Ct=amountinvestedininvestmentCatthebeginningofyeart.

Dt=amountinvestedininvestmentDatthebeginningofyeart.

Rt=amountnotinvestedatthebeginninfofyeart.

MaximizeReturn=1.40A4+1.70B3+1.90C2+1.30D5+R5

subjectto A1+B1+R1=$60,000

A2+B2+C2–R1+R2=0

–1.40A1+A3+B3–R2+R3=0

–1.40A2+A4–1.70B1–R3+R4=0

–1.40A3–1.70B2+D5–R4+R5=0

and At≥

0,Bt≥0,Ct≥

0,Dt≥

0,Rt≥0.

c)

4.18 a) Letxi=percentageofalloyiinthenewalloy(i=1,2,3,4,5).

(60%)x1+(25%)x2+(45%)x3+(20%)x4+(50%)x5=40%

(10%)x1+(15%)x2+(45%)x3+(50%)x4+(40%)x5=35%

(30%)x1+(60%)x2+(10%)x3+(30%)x4+(10%)x5=25%

x1+x2+x3+x4+x5=100%

b)

c) Letxi=percentageofalloyiinthenewalloy(i=1,2,3,4,5).

MinimizeCost=$22x1+$20x2+$25x3+$24x4+$27x5

subjectto (60%)x1+(25%)x2+(45%)x3+(20%)x4+(50%)x5=40%

(10%)x1+(15%)x2+(45%)x3+(50%)x4+(40%)x5=35%

(30%)x1+(60%)x2+(10%)x3+(30%)x4+(10%)x5=25%

and x1≥

0,x2≥0,x3≥0,x4≥

0,x5≥

0.

4.19 a)

b) Letxij=numberofunitsproducedatplantiofproductj(i=1,2,3;j=L,M,S).

MaximizeProfit=$420(x1L+x2L+x3L)+$360(x1M+x2M+x3M)+$300(x1S+x2S+x3S)

subjectto x1L+x1M+x1S≤750

x2L+x2M+x2S≤

900

x3L+x3M+x3S≤

450

20x1L+15x1M+12x1S≤

13,000squarefeet

20x2L+15x2M+12x2S≤

12,000squarefeet

20x3L+15x3M+12x3S≤

5,000squarefeet

x1L+x2L+x3L≤

900

x1M+x2M+x3M≤

1,200

x1S+x2S+x3S≤750

(x1L+x1M+x1S)/750=(x2L+x2M+x2S)/900

(x1L+x1M+x1S)/750=(x3L+x3M+x3S)/450

andx1L≥

0,x1M≥

0,x1S≥

0,x2L≥0,x2M≥

0,x2S≥0,x3L≥

0,x3M≥

0,x3S≥

0.

4.20 a)

b) Letxij=tonsofcargoistowedincompartmentj(i=1,2,3,4;j=F,C,B)

MaximizeProfit=$320(x1F+x1C+x1B)+$400(x2F+x2C+x2B)

+$360(x3F+x3C+x3B)+$290(x4F+x4C+x4B)

subjectto x1F+x2F+x3F+x4F≤12tons

x1C+x2C+x3C+x4C≤18tons

x1B+x2B+x3B+x4B≤

10tons

x1F+x1C+x1B≤20tons

x2F+x2C+x2B≤

16tons

x3F+x3C+x3B≤25tons

x4F+x4C+x4B≤13tons

500x1F+700x2F+600x3F+400x4F≤7,000cubicfeet

500x1C+700x2C+600x3C+400x4C≤9,000cubicfeet

500x1B+700x2B+600x3B+400x4B≤

5,000cubicfeet

(x1F+x2F+x3F+x4F)/12=(x1C+x2C+x3C+x4C)/18

(x1F+x2F+x3F+x4F)/12=(x1B+x2B+x3B+x4B)/10

and x1F≥

0,x1C≥

0,x1B≥

0,x2F≥

0,x2C≥

0,x2B≥

0,

x3F≥

0,x3C≥0,x3B≥0,x4F≥

0,x4C≥

0,x4B≥

0.

4.21 a)

b) Let M=numberofmen’sglovestoproduceperweek,

W=numberofwomen’sglovestoproduceperweek,

C=numberofchildren’sglovestoproduceperweek,

F=numberoffull-timeworkerstoemploy,

PT=numberofpart-timeworkerstoemploy.

MaximizeProfit=$8M+$10W+$6C–$13(40)F–$10(20)PT

subjectto 2M+1.5W+C≤5,000squarefeet

30M+45W+40C≤40(60)F+20(60)PThours

F≥

20

F≥2PT

and M≥

0,W≥

0,C≥

0,F≥0,PT≥

0.

4.22

4.23 a) ResourceConstraints:

Caloriesmustbenomorethan420.

Nomorethan20%oftotalcaloriesfromfat.

BenefitConstraints:

Caloriesmustbeatleast380

Theremustbeatleast50mgofvitamincontent.

Theremustbeatleast2timesasmuchstrawberryflavoringassweetener.

Fixed-RequirementConstraints:

Theremustbe15mgofthickeners.

b)

c) Let S=Tablespoonsofstrawberryflavoring,

CR=Tablespoonsofcream,

V=Tablespoonsofvitaminsupplement,

A=Tablespoonsofartificialsweetener,

T=Tablespoonsofthickeningagent,

MinimizeC=$0.10S+$0.08CR+$0.25V+$0.15A+$0.06T

subjectto 50S+100CR+120A+80T≥380calories

50S+100CR+120A+80T≤420calories

S+75CR+30T≤0.2(50S+100C+120A+80T)

20S+50V+2T≥50mgVitamins

S≥2A

3S+8CR+V+2A+25T=15mgThickeners

and S≥

0,CR≥

0,V≥

0,A≥0,T≥0.

4.24 a) ResourceConstraints:

Caloriesmustbenomorethan600.

Nomorethan30%oftotalcaloriesfromfat.

BenefitConstraints:

Caloriesmustbeatleast400

Theremustbeatleast60mgofvitaminC.

Theremustbeatleast12gofprotein.

Theremustbeatleast2timesasmuchpeanutbutterasjelly.

Theremustbeatleast1cupofliquid

Fixed-RequirementConstraints:

Theremustbe2slicesofbread.

b)

c) Let B=slicesofbread,

P=Tablespoonsofpeanutbutter,

S=Tablespoonsofstrawberryjelly,

G=grahamcrackers,

M=cupsofmilk,

J=cupsofjuice.

MinimizeC=$0.05B+$0.04P+$0.07S+$0.08G+$0.15M+$0.35J

subjectto 70B+100P+50S+60G+150M+100J≥400calories

70B+100P+50S+60G+150M+100J≤600calories

10B+75P+20G+70M

≤0.3(70B+100P+50S+60G+150M+100J)

3S+2M+120J≥60mgVitaminC

3B+4P+G+8M+J≥12mgProtein

B=2slices

P≥2S

M+J≥1cup

and B≥0,P≥

0,S≥0,G≥0,M≥

0,J≥0.

Cases

4.1 a) ThefixeddesignandfashioncostsaresunkcostsandthereforeshouldnotbeconsideredwhensettingtheproductionnowinJuly.Sincethevelvetshirtshaveapositivecontributiontocoveringthesunkcosts,theyshouldbeproducedoratleastconsideredforproductionaccordingtothelinearprogrammingmodel.HadTedraisedtheseconcernsbeforeanyfixedcostsweremade,thenhewouldhavebeencorrecttoadviseagainstdesigningandproducingtheshirts.Withacontributionof$22andademandof6000units,maximumexpectedprofitwillbeonly$132,000.Thisamountwillnotbeenoughtocoverthe$500,000infixedcostsdirectlyattributabletothisproduct.

b) Thelinearprogrammingspreadsheetmodelforthisproblemisshownbelow.

TrendLineshouldproduce4,200WoolSlacks,4,000CashmereSweaters,7,000SilkBlouses,15,000SilkCamisoles,8,067TailoredSkirts,5,000WoolBlazers,40,000CottonMinis,6,000VelvetShirts,and9,244Button-DownBlouses.Thetotalnetcontributionofallclothingitemsis$6,862,933.However,withthetotalfixedcostof$860,000+3($2,700,000)or$8,960,000,TrendLinesactuallyloses$2,097,067.

c) Ifvelvetcannotbesentbacktothetextilewholesaler,thenthewholequantitywillbeconsideredasasunkcostandthereforeaddedtothefixedcosts.Theobjectivefunctioncoefficientsofitemsusingvelvetwillnolongerincludethematerialcost.Thenetcontributionofthevelvetpantsandshirtsarenow$175and$40,respectively.Therevisedspreadsheetmodelisasfollows.

Theproductionplanchangesconsiderably.TrendLinesshouldproduce3,178tailoredskirts(downfrom8,067),3,667velvetpants(upfrom0),60,000cottonminis(upfrom40,000),and15,763button-downblouses(upfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsequals$840,000+$1,226,00+$2,025,000+$2,983,822.22=$7,085,822.Thesunkcostsnowincludethematerialcostforvelvetandtotals$9,200,000.Thelossnowequals$2,114,178.

d) WhenTrendLinescannotreturnthevelvettothewholesaler,thecostsforvelvetcannotberecovered.Thesecostarenolongervariablecostbutnowaresunkcost.Asaconsequencetheincreasednetcontributionofthevelvetitemsmakesthemmoreattractivetoproduce.Thiswaytherevenuesfromsellingtheseitemscancontributetotherecoveryofatleastsomeofthefixedcosts.InsteadofzeroTrendLinesnowproduces3,667velvetpants.Thesepantsalsorequiresomeacetateandthustheirproductionaffectstheproductionplanforallotheritems.Sinceitisnotoptimaltomakefulluseoftheorderedvelvetinpart(b)itcomesasnosurprisethatthelossinpart(c)isevenbiggerthaninpart(b).

e) Theunitcontributionofawoolblazerchangesto$75.25.

TrendLinesshouldproduce10,067skirts(upfrom8,067),theminimumof3,000woolblazers(downfrom5,000),and6,578button-downblouses(downfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsis$6,527,933.33.Thetotallossis$2,432,067.

f) Theavailableacetatechangesfrom28,000to38,000squareyards.Theresultingspreadsheetsolutionisshownbelow.

TrendLinesshouldproduce14,733skirts(upfrom8,067)and356button-downblouses(downfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsis$7,581,267.Thelossis$1,378,733.

g) WeneedtoincludenewdecisionvariablesrepresentingthenumberofclothingitemsthataresoldduringtheNovembersale.Thenewspreadsheetmodelisshownbelow.

Itonlypaystoproduce2,000moreCashmeresweaters.Theproductionplanforallotheritemsisthe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論