版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
4-
PAGE
10
4-
PAGE
9
Chapter4
linearprogramming:formulationandapplications
ReviewQuestions
4.1-1 Determinewhichlevelsshouldbechosenofdifferentadvertisingmediatoobtainthemosteffectiveadvertisingmixforthenewcereal.
4.1-2 Theexpectednumberofexposures.
4.1-3 TVcommercialsarenotbeingusedandthatistheprimarymethodofreachingyoungchildren.
4.1-4 Theyneedtochecktheassumptionthatfractionalsolutionsareallowedandtheassumptionofproportionality.
4.2-1 Eachfunctionalconstraintinthelinearprogrammingmodelisaresourceconstraint.
4.2-2 Amountofresourceused≤Amountofresourceavailable.
4.2-3 1) Theamountavailableofeachlimitedresource.
2) Theamountofeachresourceneededbyeachactivity.Specifically,foreachcombinationofresourceandactivity,theamountofresourceusedperunitofactivitymustbeestimated.
3) Thecontributionperunitofeachactivitytotheoverallmeasureofperformance.
4.2-4 Thethreeactivitiesintheexamplesaredeterminingthemostprofitablemixofproductionratesfortwonewproducts,capitalbudgeting,andchoosingthemixofadvertisingmedia.
4.2-5 Theresourcesintheexamplesareavailableproductioncapacitiesofdifferentplants,cumulativeinvestmentcapitalavailablebycertaintimes,financialallocationsforadvertisingandforplanningpurposes,andTVcommercialspotsavailableforpurchase.
4.3-1 Forresource-allocationproblems,limitsaresetontheuseofvariousresources,andthentheobjectiveistomakethemosteffectiveuseofthesegivenresources.Forcost-benefit-tradeoffproblems,managementtakesamoreaggressivestance,prescribingwhatbenefitsmustbeachievedbytheactivitiesunderconsideration,andthentheobjectiveistoachieveallthesebenefitswithminimumcost.
4.3-2 Theidentifyingfeatureforacost-benefit-tradeoffproblemisthateachfunctionalconstraintisabenefitconstraint.
4.3-3 Levelachieved≥Minimumacceptablelevel.
4.3-4 1) Theminimumacceptablelevelforeachbenefit(amanagerialpolicydecision).
2) Foreachbenefit,thecontributionofeachactivitytothatbenefit(perunitoftheactivity).
3) Thecostperunitofeachactivity.
4.3-5 Theactivitiesfortheexamplesarechoosingthemixofadvertisingmedia,personnelscheduling,andcontrollingairpollution.
4.3-6 Thebenefitsfortheexamplesareincreasedmarketshare,minimizingtotalpersonnelcostswhilemeetingservicerequirements,andreductionsintheemissionofpollutants.
4.4-1 Distribution-networkproblemsdealwiththedistributionofgoodsthroughadistributionnetworkatminimumcost.
4.4-2 Anidentifyingfeatureforadistribution-networkproblemisthateachfunctionalconstraintisafixed-requirementconstraint.
4.4-3 Incontrasttothe≤formforresourceconstraintsandthe≥formforbenefitconstraints,fixed-requirementconstraintshavean=form.
4.4-4 Factory1mustship12lathes,Factory2mustship15lathes,Customer1mustreceive10lathes,Customer2mustreceive8lathes,andCustomer3mustreceive9lathes.
4.5-1 Twonewgoalsneedtobeincorporatedintothemodel.Thefirstisthattheadvertisingshouldbeseenbyatleast5millionyoungchildren.Thesecondisthattheadvertisingshouldbeseenbyatleast5millionparentsofyoungchildren.
4.5-2 Twobenefitconstraintsandafixed-requirementconstraintareincludedinthenewlinearprogrammingmodel.
4.5-3 Managementdecidedtoadoptthenewplanbecauseitdoesamuchbetterjobofmeetingallofmanagement’sgoalsforthecampaign.
4.6-1 Mixedproblemsmaycontainallthreetypesoffunctionalconstraints:resourceconstraints,benefitconstraints,andfixed-requirementconstraints.
4.6-2 TheSave-ItCblemisanexampleofablendingproblemwheretheobjectiveistofindthebestblendofingredientsintofinalproductstomeetcertainspecifications.
4.7-1 Alinearprogrammingmodelmustaccuratelyreflectthemanagerialviewoftheproblem.
4.7-2 Largelinearprogrammingmodelsgenerallyareformulatedbymanagementscienceteams.
4.7-3 Thelineofcommunicationbetweenthemanagementscienceteamandthemanagerisvital.
4.7-4 Modelvalidationisatestingprocessusedonaninitialversionofamodeltoidentifytheerrorsandomissionsthatinevitablyoccurwhenconstructinglargemodels.
4.7-5 Theprocessofmodelenrichmentinvolvesbeginningwitharelativelysimpleversionofthemodelandthenusingtheexperiencegainedwiththismodeltoevolvetowardmoreelaboratemodelsthatmorenearlyreflectthecomplexityoftherealproblem.
4.7-6 What-ifanalysisisanimportantpartofalinearprogrammingstudybecauseanoptimalsolutioncanonlybesolvedforwithrespecttoonespecificversionofthemodelatatime.Managementmayhave“what-if”questionsabouthowthesolutionwillchangegivenchangesinthemodelformulation.
4.8-1 ThePonderosaproblemfallsintothemixedproblemcategory.TheUnitedAirlinesproblemisbasicallyacost-benefit-tradeoffproblem.TheCitgoproblemisadistribution-networkproblem.
4.8-2 ThePonderosaproblemhas90decisionvariables,theUnitedAirlinesproblemhasover20,000decisionvariables,andtheCitgoproblemhasabout15,000decisionvariables.
4.8-3 TwofactorshelpedmakethePonderosaapplicationsuccessful.Oneisthattheyimplementedafinancialplanningsystemwithanatural-languageuserinterface,withtheoptimizationcodesoperatinginthebackground.Theothersuccessfactorwasthattheoptimizationsystemusedwasinteractive.
4.8-4 ThemostimportantsuccessfactorintheUnitedAirlinesapplicationwasthesupportofoperationalmanagersandtheirstaffs.
4.8-5 ThefactorsthathelpedmaketheCitgoapplicationsuccessfulweredevelopingoutputreportsinthelanguageofmanagerstomeettheirneeds,using“what-if”analysis,thesupportofoperationalmanagers,and,mostimportantly,theunlimitedsupportprovidedthemanagementsciencetaskforcebytopmanagement.
Problems
4.1 a)
Datacells: B2:E2,B6:E7,H6:H7,B13,andD13
Changingcells: B11:E11
Targetcell: H11
b) Thisisalinearprogrammingmodelbecausethedecisionsarerepresentedbychangingcellsthatcanhaveanyvaluethatsatisfytheconstraints.Eachconstrainthasanoutputcellontheleft,amathematicalsigninthemiddle,andadatacellontheright.Theoveralllevelofperformanceisrepresentedbythetargetcellandtheobjectiveistomaximizethatcell.Also,theExcelequationforeachoutputcellisexpressedasaSUMPRODUCTfunctionwhereeachterminthesumistheproductofadatacellandachangingcell.
c) Let T=numberofcommercialsonTV
M=numberofadvertisementsinmagazines
R=numberofcommercialsonradio
S=numberofadvertisementsinSundaysupplements.
MaximizeExposures(thousands)=140T+60M+90R+50S
subjectto 300T+150M+200R+100S≤4,000($thousands)
90T+30M+50R+40S≤1,000($thousands)
T≤5spots
R≤10spots
and T≥0,M≥0,R≥0,S≥0.
4.2 a&c)
b)
(x1,x2)
Feasible?
TotalContribution
(2,2)
Yes
$100
(3,3)
Yes
$150
(2,4)
Yes
$160
Best
(4,2)
Yes
$140
(3,4)
No
(4,3)
No
d) Let x1=levelofactivity1
x2=levelofactivity2
MaximizeContribution=$20x1+$30x2
subjectto 2x1+x2≤10
3x1+3x2≤20
2x1+4x2≤
20
and x1≥0,x2≥0.
e) OptimalSolution:(x1,x2)=(3.333,3.333)andTotalContribution=$166.67.
4.3 a)
b) Let x1=levelofactivity1
x2=levelofactivity2
x3=levelofactivity3
MaximizeContribution=$50x1+$40x2+$70x3
subjectto 30x1+20x2≤
500
10x2+40x3≤600
20x1+20x2+30x3≤
1,000
and x1≥
0,x2≥
0,x3≥
0.
4.4 a&c)
b) Belowarefivepossibleguesses(manyanswersarepossible).
(x1,x2,x3,x4)
Feasible?
P
(30,30,30,30)
Yes
$1110
(40,40,40,40)
No
(35,39,30,40)
Yes
$1336
(35,39,34,40)
Yes
$1368
(37,39,35,40)
Yes
$1398
Best
4.5 a) Theactivitiesaretheproductionratesofproducts1,2,and3.Thelimitedresourcesarehoursavailableperweekonthemillingmachine,lathe,andgrinder.
b) Thedecisionstobemadearehowmanyofeachproductshouldbeproducedperweek.Theconstraintsonthesedecisionsarethenumberofhoursavailableperweekonthemillingmachine,lathe,andgrinderaswellasthesalespotentialofproduct3.Theoverallmeasureofperformanceistotalprofit,whichistobemaximized.
c) millingmachine: 9(#unitsof1)+3(#unitsof2)+5(#unitsof3)≤500
lathe: 5(#unitsof1)+4(#unitsof2)≤350
grinder: 3(#unitsof1)+2(#unitsof3)≤150
sales: (#unitsof3)≤20
Nonnegativity: (#unitsof1)≥0,(#unitsof2)≥0,(#unitsof3)≥0
Profit=$50(#unitsof1)+$20(#unitsof2)+$25(#unitsof3)
d)
Datacells: B2:D2,B5:D7,G5:G7,andD12
Changingcells: B10:D10
Targetcell: G10
Outputcells: E5:E7
e) Let x1=unitsofproduct1producedperweek
x2=unitsofproduct2producedperweek
x3=unitsofproduct3producedperweek
MaximizeProfit=$50x1+$20x2+$25x3
subjectto 9x13x2+5x3≤500hours
5x1+4x2≤350hours
3x1+2x3≤150hours
x3≤20
and x1≥
0,x2≥
0,x3≥
0.
4.6 a) TheactivitiesaretheproductionquantitiesofpartsA,B,andC.Thelimitedresourcesarethehoursavailableonmachine1andmachine2.
b&d)
c) Belowarethreepossibleguesses(manyanswersarepossible).
(x1,x2,x3)
Feasible?
P
(500,500,300)
No
(350,1000,0)
Yes
$57,500
(400,1000,0)
Yes
$60,000
Best
e) Let A=numberofpartAproduced
B=numberofpartBproduced
C=numberofpartCproduced
MaximizeProfit=$50A+$40B+$30C
subjectto 0.02A+0.03B+0.05C≤
40hours
0.05A+0.02B+0.04C≤
40hours
and A≥0,B≥
0,C≥
0.
4.7
4.8 a&c)
b)
(x1,x2)
Feasible?
C
(7,7)
No
(7,8)
No
(8,7)
No
(8,8)
Yes
$880
Best
(8,9)
Yes
$930
(9,8)
Yes
$940
d) Let x1=levelofactivity1
x2=levelofactivity2
MinimizeCost=$60x1+$50x2
subjectto 5x1+3x2≥60
2x1+2x2≥30
7x1+9x2≥126
and x1≥0,x2≥0.
e) OptimalSolution:(x1,x2)=(6.75,8.75)andTotalCost=$842.50.
4.9 a&c)
b) Belowarefivepossibleguesses(manyanswersarepossible).
(x1,x2,x3,x4)
Feasible?
C
(32,4,0,6)
No
(33,4,0,6)
Yes
$17,400
Best
(33,5,0,6)
No
(33,4,1,6)
Yes
$17,900
(33,4,1,7)
Yes
$18,200
4.10 a&d)
b) (x1,x2,x3)=(1,2,2)isafeasiblesolutionwithadailycostof$3.48.Thisdietwillprovide210kgofcarbohydrates,310kgofprotein,and170kgofvitaminsdaily.
c) Answerswillvary.
e) Let C=kgofcorntofeedeachpig
T=kgoftankagetofeedeachpig
A=kgofalfalfatofeedeachpig
MinimizeCost=$0.84C+$0.72T+$0.60A
subjectto 90C+20T+40A≥200
30C+80T+40A≥
180
10C+20T+60A≥150
and C≥0,T≥0,A≥0.
4.11 a&d)
c) (x1,x2,x3)=(100,100,200)isafeasiblesolution.Thiswouldgenerate$400millionin5years,$300millionin10years,and$550millionin20years.Thetotalinvestedwillbe$400million.
d) Answerswillvary.
f) Let x1=unitsofAsset1purchased
x2=unitsofAsset2purchased
x3=unitsofAsset3purchased
MinimizeCost=x1+x2+x3($millions)
subjectto 2x1+x2+0.5x3≥400($millions)
0.5x1+0.5x2+x3≥100($millions)
1.5x2+2x3≥300($millions)
and x1≥
0,x2≥0,x3≥0.
4.12 a) Theactivitiesareleasingspaceineachmonthforanumberofmonths.Thebenefitismeetingthespacerequirementsforeachmonth.
b) Thedecisionstobemadearehowmuchspacetoleaseandforhowmanymonths.Theconstraintsonthesedecisionsaretheminimumrequiredspace.Theoverallmeasureofperformanceiscostwhichistobeminimized.
c) Month1:(M11molease)+(M12molease)+(M13molease)+(M14molease)+(M15molease)≥30,000squarefeet.
Month2:(M12molease)+M13molease)+(M14molease)+(M15molease)+(M21molease)+(M22molease)+(M23molease)+(M24molease)≥20,000squarefeet.
Month3:(M13molease)+(M14molease)+(M15molease)+(M22molease)+(M23molease)+(M24molease)+(M31molease)+(M32molease)+(M33molease)≥40,000squarefeet.
Month4:(M14molease)+(M15molease)+(M23molease)+(M24molease)+(M32molease)+(M33molease)+(M41molease)+(M42molease)≥10,000squarefeet.
Month5:(M15molease)+(M24molease)+(M33molease)+(M42molease)+(M51molease)≥50,000squarefeet.
Nonnegativity:(M11molease)≥0,(M12molease)≥0,(M13molease)≥
0,(M14molease)≥0,(M15molease)≥0,(M21molease)≥0,(M22molease)≥0,(M23molease)≥0,(M24molease)≥0,(M31molease)≥0,(M32molease)≥0,(M33molease)≥0,(M41molease)≥0,(M42molease)≥0,(M51molease)≥
0.
Cost=($650)[(M11molease)+(M21molease)+(M31molease)+(M41molease)+(M51molease)]+($1,000)[(M12molease)+(M22molease)+(M32molease)+(M42molease)]+($1,350)[(M13molease)+(M23molease)+(M33molease)]+($1,600)[(M14molease)+(M24molease)]+($1,900)[M15molease]
d)
Datacells: B4:P8,B10:P10,andS4:S8
Changingcells: B13:P13
Targetcell: S13
Outputcells: Q4:Q8
e) Letxij=squarefeetofspaceleasedinmonthiforaperiodofjmonths.
fori=1,...,5andj=1,...,6-i.
MinimizeC=$650(x11+x21+x31+x41+x51)+$1,000(x12+x22+x32+x42)
+$1,350(x13+x23+x33)+$1,600(x14+x24)+$1,900x15
subjectto x11+x12+x13+x14+x15≥30,000squarefeet
x12+x13+x14+x15+x21+x22+x23+x24≥20,000squarefeet
x13+x14+x15+x22+x23+x24+x31+x32+x33≥40,000sq.feet
x14+x15+x23+x24+x32+x33+x41+x42≥10,000squarefeet
x15+x24+x33+x42+x51≥50,000squarefeet
and xij≥
0,fori=1,...,5andj=1,...,6-i.
4.13
4.14 a) Thisisacost-benefit-tradeoffproblembecauseitasksyoutomeetminimumrequiredbenefitlevels(numberofconsultantsworkingeachtimeperiod)atminimumcost.
b)
c) Let f1=numberoffull-timeconsultantsworkingthemorningshift(8a.m.-4p.m.),
f2=numberoffull-timeconsultantsworkingtheafternoonshift(12p.m.-8p.m.),
f3=numberoffull-timeconsultantsworkingtheeveningshift(4p.m.-midnight),
p1=numberofpart-timeconsultantsworkingthefirstshift(8a.m.-12p.m.),
p2=numberofpart-timeconsultantsworkingthesecondshift(12p.m.-4p.m.),
p3=numberofpart-timeconsultantsworkingthethirdshift(4p.m.-8p.m.),
p4=numberofpart-timeconsultantsworkingthefourthshift(8p.m.-midnight).
MinimizeC=($14/hour)(8hours)(f1+f2+f3)+($5/hour)(4hours)(p1+p2+p3+p4)
subjectto f1+p1≥
6
f1+f2+p2≥8
f2+f3+p3≥
12
f3+p4≥6
f1≥2p1
f1+f2≥2p2
f2+f3≥2p3
f3≥
2p4
and f1≥
0,f2≥
0,f3≥
0,p1≥0,p2≥
0,p3≥
0,p4≥
0.
4.15 a) Thisisadistribution-networkproblembecauseitdealswiththedistributionofgoodsthroughadistributionnetworkatminimumcost.
b)
c) Let xij=numberofunitstoshipfromFactoryitoCustomerj(i=1,2;j=1,2,3)
MinimizeCost=$600x11+$800x12+$700x13+$400x21+$900x22+$600x23
subjectto x11+x12+x13=400
x21+x22+x23=500
x11+x21=300
x12+x22=200
x13+x23=400
and x11≥
0,x12≥0,x13≥0,x21≥
0,x22≥0,x23≥
0.
4.16 a) Requirement1:ThetotalamountshippedfromMine1mustbe40tons.
Requirement2:ThetotalamountshippedfromMine2mustbe60tons.
Requirement3:ThetotalamountshippedtothePlantmustbe100tons.
Requirement4:ForStorage1,theamountshippedout=theamountin.
Requirement5:ForStorage2,theamountshippedout=theamountin.
b)
c) Let xM1S1=numberofunitsshippedfromMine1toStorage1
xM1S2=numberofunitsshippedfromMine1toStorage2
xM2S1=numberofunitsshippedfromMine2toStorage1
xM2S2=numberofunitsshippedfromMine2toStorage2
xS1P=numberofunitsshippedfromStorage1tothePlant
xS2P=numberofunitsshippedfromStorage2tothePlant
MinimizeCost=$2,000xM1S1+$1,700xM1S2+$1,600xM2S1+$1,100xM2S2
+$400xS1P+$800xS2P
subjectto xM1S1+xM1S2=40
xM2S1+xM2S2=60
xM1S1+xM2S1=xS1P
xM1S2+xM2S2=xS2P
xS1P+xS2P=100
xM1S1≤
30,xM1S2≤
30,xM2S1≤
50,xM2S2≤50,xS1P≤
70,xS2P≤
70
and xM1S1≥
0,xM1S2≥
0,xM2S1≥
0,xM2S2≥
0,xS1P≥
0,xS2P≥
0.
4.17 a) A1+B1+R1=$60,000
A2+B2+C2+R2=R1
A3+B3+R3=R2+1.40A1
A4+R4=R3+1.40A2+1.70B1
A5+D5+R5=R4+1.40A3+1.70B2
b) Let At=amountinvestedininvestmentAatthebeginningofyeart.
Bt=amountinvestedininvestmentBatthebeginningofyeart.
Ct=amountinvestedininvestmentCatthebeginningofyeart.
Dt=amountinvestedininvestmentDatthebeginningofyeart.
Rt=amountnotinvestedatthebeginninfofyeart.
MaximizeReturn=1.40A4+1.70B3+1.90C2+1.30D5+R5
subjectto A1+B1+R1=$60,000
A2+B2+C2–R1+R2=0
–1.40A1+A3+B3–R2+R3=0
–1.40A2+A4–1.70B1–R3+R4=0
–1.40A3–1.70B2+D5–R4+R5=0
and At≥
0,Bt≥0,Ct≥
0,Dt≥
0,Rt≥0.
c)
4.18 a) Letxi=percentageofalloyiinthenewalloy(i=1,2,3,4,5).
(60%)x1+(25%)x2+(45%)x3+(20%)x4+(50%)x5=40%
(10%)x1+(15%)x2+(45%)x3+(50%)x4+(40%)x5=35%
(30%)x1+(60%)x2+(10%)x3+(30%)x4+(10%)x5=25%
x1+x2+x3+x4+x5=100%
b)
c) Letxi=percentageofalloyiinthenewalloy(i=1,2,3,4,5).
MinimizeCost=$22x1+$20x2+$25x3+$24x4+$27x5
subjectto (60%)x1+(25%)x2+(45%)x3+(20%)x4+(50%)x5=40%
(10%)x1+(15%)x2+(45%)x3+(50%)x4+(40%)x5=35%
(30%)x1+(60%)x2+(10%)x3+(30%)x4+(10%)x5=25%
and x1≥
0,x2≥0,x3≥0,x4≥
0,x5≥
0.
4.19 a)
b) Letxij=numberofunitsproducedatplantiofproductj(i=1,2,3;j=L,M,S).
MaximizeProfit=$420(x1L+x2L+x3L)+$360(x1M+x2M+x3M)+$300(x1S+x2S+x3S)
subjectto x1L+x1M+x1S≤750
x2L+x2M+x2S≤
900
x3L+x3M+x3S≤
450
20x1L+15x1M+12x1S≤
13,000squarefeet
20x2L+15x2M+12x2S≤
12,000squarefeet
20x3L+15x3M+12x3S≤
5,000squarefeet
x1L+x2L+x3L≤
900
x1M+x2M+x3M≤
1,200
x1S+x2S+x3S≤750
(x1L+x1M+x1S)/750=(x2L+x2M+x2S)/900
(x1L+x1M+x1S)/750=(x3L+x3M+x3S)/450
andx1L≥
0,x1M≥
0,x1S≥
0,x2L≥0,x2M≥
0,x2S≥0,x3L≥
0,x3M≥
0,x3S≥
0.
4.20 a)
b) Letxij=tonsofcargoistowedincompartmentj(i=1,2,3,4;j=F,C,B)
MaximizeProfit=$320(x1F+x1C+x1B)+$400(x2F+x2C+x2B)
+$360(x3F+x3C+x3B)+$290(x4F+x4C+x4B)
subjectto x1F+x2F+x3F+x4F≤12tons
x1C+x2C+x3C+x4C≤18tons
x1B+x2B+x3B+x4B≤
10tons
x1F+x1C+x1B≤20tons
x2F+x2C+x2B≤
16tons
x3F+x3C+x3B≤25tons
x4F+x4C+x4B≤13tons
500x1F+700x2F+600x3F+400x4F≤7,000cubicfeet
500x1C+700x2C+600x3C+400x4C≤9,000cubicfeet
500x1B+700x2B+600x3B+400x4B≤
5,000cubicfeet
(x1F+x2F+x3F+x4F)/12=(x1C+x2C+x3C+x4C)/18
(x1F+x2F+x3F+x4F)/12=(x1B+x2B+x3B+x4B)/10
and x1F≥
0,x1C≥
0,x1B≥
0,x2F≥
0,x2C≥
0,x2B≥
0,
x3F≥
0,x3C≥0,x3B≥0,x4F≥
0,x4C≥
0,x4B≥
0.
4.21 a)
b) Let M=numberofmen’sglovestoproduceperweek,
W=numberofwomen’sglovestoproduceperweek,
C=numberofchildren’sglovestoproduceperweek,
F=numberoffull-timeworkerstoemploy,
PT=numberofpart-timeworkerstoemploy.
MaximizeProfit=$8M+$10W+$6C–$13(40)F–$10(20)PT
subjectto 2M+1.5W+C≤5,000squarefeet
30M+45W+40C≤40(60)F+20(60)PThours
F≥
20
F≥2PT
and M≥
0,W≥
0,C≥
0,F≥0,PT≥
0.
4.22
4.23 a) ResourceConstraints:
Caloriesmustbenomorethan420.
Nomorethan20%oftotalcaloriesfromfat.
BenefitConstraints:
Caloriesmustbeatleast380
Theremustbeatleast50mgofvitamincontent.
Theremustbeatleast2timesasmuchstrawberryflavoringassweetener.
Fixed-RequirementConstraints:
Theremustbe15mgofthickeners.
b)
c) Let S=Tablespoonsofstrawberryflavoring,
CR=Tablespoonsofcream,
V=Tablespoonsofvitaminsupplement,
A=Tablespoonsofartificialsweetener,
T=Tablespoonsofthickeningagent,
MinimizeC=$0.10S+$0.08CR+$0.25V+$0.15A+$0.06T
subjectto 50S+100CR+120A+80T≥380calories
50S+100CR+120A+80T≤420calories
S+75CR+30T≤0.2(50S+100C+120A+80T)
20S+50V+2T≥50mgVitamins
S≥2A
3S+8CR+V+2A+25T=15mgThickeners
and S≥
0,CR≥
0,V≥
0,A≥0,T≥0.
4.24 a) ResourceConstraints:
Caloriesmustbenomorethan600.
Nomorethan30%oftotalcaloriesfromfat.
BenefitConstraints:
Caloriesmustbeatleast400
Theremustbeatleast60mgofvitaminC.
Theremustbeatleast12gofprotein.
Theremustbeatleast2timesasmuchpeanutbutterasjelly.
Theremustbeatleast1cupofliquid
Fixed-RequirementConstraints:
Theremustbe2slicesofbread.
b)
c) Let B=slicesofbread,
P=Tablespoonsofpeanutbutter,
S=Tablespoonsofstrawberryjelly,
G=grahamcrackers,
M=cupsofmilk,
J=cupsofjuice.
MinimizeC=$0.05B+$0.04P+$0.07S+$0.08G+$0.15M+$0.35J
subjectto 70B+100P+50S+60G+150M+100J≥400calories
70B+100P+50S+60G+150M+100J≤600calories
10B+75P+20G+70M
≤0.3(70B+100P+50S+60G+150M+100J)
3S+2M+120J≥60mgVitaminC
3B+4P+G+8M+J≥12mgProtein
B=2slices
P≥2S
M+J≥1cup
and B≥0,P≥
0,S≥0,G≥0,M≥
0,J≥0.
Cases
4.1 a) ThefixeddesignandfashioncostsaresunkcostsandthereforeshouldnotbeconsideredwhensettingtheproductionnowinJuly.Sincethevelvetshirtshaveapositivecontributiontocoveringthesunkcosts,theyshouldbeproducedoratleastconsideredforproductionaccordingtothelinearprogrammingmodel.HadTedraisedtheseconcernsbeforeanyfixedcostsweremade,thenhewouldhavebeencorrecttoadviseagainstdesigningandproducingtheshirts.Withacontributionof$22andademandof6000units,maximumexpectedprofitwillbeonly$132,000.Thisamountwillnotbeenoughtocoverthe$500,000infixedcostsdirectlyattributabletothisproduct.
b) Thelinearprogrammingspreadsheetmodelforthisproblemisshownbelow.
TrendLineshouldproduce4,200WoolSlacks,4,000CashmereSweaters,7,000SilkBlouses,15,000SilkCamisoles,8,067TailoredSkirts,5,000WoolBlazers,40,000CottonMinis,6,000VelvetShirts,and9,244Button-DownBlouses.Thetotalnetcontributionofallclothingitemsis$6,862,933.However,withthetotalfixedcostof$860,000+3($2,700,000)or$8,960,000,TrendLinesactuallyloses$2,097,067.
c) Ifvelvetcannotbesentbacktothetextilewholesaler,thenthewholequantitywillbeconsideredasasunkcostandthereforeaddedtothefixedcosts.Theobjectivefunctioncoefficientsofitemsusingvelvetwillnolongerincludethematerialcost.Thenetcontributionofthevelvetpantsandshirtsarenow$175and$40,respectively.Therevisedspreadsheetmodelisasfollows.
Theproductionplanchangesconsiderably.TrendLinesshouldproduce3,178tailoredskirts(downfrom8,067),3,667velvetpants(upfrom0),60,000cottonminis(upfrom40,000),and15,763button-downblouses(upfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsequals$840,000+$1,226,00+$2,025,000+$2,983,822.22=$7,085,822.Thesunkcostsnowincludethematerialcostforvelvetandtotals$9,200,000.Thelossnowequals$2,114,178.
d) WhenTrendLinescannotreturnthevelvettothewholesaler,thecostsforvelvetcannotberecovered.Thesecostarenolongervariablecostbutnowaresunkcost.Asaconsequencetheincreasednetcontributionofthevelvetitemsmakesthemmoreattractivetoproduce.Thiswaytherevenuesfromsellingtheseitemscancontributetotherecoveryofatleastsomeofthefixedcosts.InsteadofzeroTrendLinesnowproduces3,667velvetpants.Thesepantsalsorequiresomeacetateandthustheirproductionaffectstheproductionplanforallotheritems.Sinceitisnotoptimaltomakefulluseoftheorderedvelvetinpart(b)itcomesasnosurprisethatthelossinpart(c)isevenbiggerthaninpart(b).
e) Theunitcontributionofawoolblazerchangesto$75.25.
TrendLinesshouldproduce10,067skirts(upfrom8,067),theminimumof3,000woolblazers(downfrom5,000),and6,578button-downblouses(downfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsis$6,527,933.33.Thetotallossis$2,432,067.
f) Theavailableacetatechangesfrom28,000to38,000squareyards.Theresultingspreadsheetsolutionisshownbelow.
TrendLinesshouldproduce14,733skirts(upfrom8,067)and356button-downblouses(downfrom9,244).Theproductiondecisionsforallotheritemsareunaffectedbythechange.Thetotalnetcontributionofallclothingitemsis$7,581,267.Thelossis$1,378,733.
g) WeneedtoincludenewdecisionvariablesrepresentingthenumberofclothingitemsthataresoldduringtheNovembersale.Thenewspreadsheetmodelisshownbelow.
Itonlypaystoproduce2,000moreCashmeresweaters.Theproductionplanforallotheritemsisthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)店運營合同三篇
- 2025版物業(yè)財務管理合作協(xié)議范本3篇
- 二零二五年度個人貨車租賃合同范本(含車輛租賃合同附件清單)2篇
- 實現(xiàn)目標的關鍵
- 部編版一年級語文下冊第19課《咕咚》精美課件
- 二零二五年度公共機構行政車輛保養(yǎng)維修服務協(xié)議書2篇
- 二零二五年度某小區(qū)臨街門面租賃合作協(xié)議書3篇
- 風險管理與企業(yè)戰(zhàn)略目標的銜接培訓
- 社區(qū)行業(yè)保安工作總結
- 二零二五年度創(chuàng)意市集攤位租賃運營合同12篇
- 城鎮(zhèn)智慧排水系統(tǒng)技術標準
- 采購管理制度及流程采購管理制度及流程
- 巖土工程勘察服務投標方案(技術方案)
- 新修訂藥品GMP中藥飲片附錄解讀課件
- 五年級美術下冊第9課《寫意蔬果》-優(yōu)秀課件4人教版
- 節(jié)能降耗課件
- 尼爾森數(shù)據(jù)市場分析報告
- 氧氣霧化吸入法
- 非標自動化設備技術規(guī)格書和驗收標準(模板)
- 領導干部個人有關事項報告表(模板)
- GB/T 7631.18-2017潤滑劑、工業(yè)用油和有關產(chǎn)品(L類)的分類第18部分:Y組(其他應用)
評論
0/150
提交評論