透視場(chǎng)景的圖像填補(bǔ)方法_第1頁(yè)
透視場(chǎng)景的圖像填補(bǔ)方法_第2頁(yè)
透視場(chǎng)景的圖像填補(bǔ)方法_第3頁(yè)
透視場(chǎng)景的圖像填補(bǔ)方法_第4頁(yè)
透視場(chǎng)景的圖像填補(bǔ)方法_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

透視場(chǎng)景的圖像填補(bǔ)方法I.Introduction

A.BackgroundandMotivation

B.ScopeoftheResearch

C.ObjectivesoftheResearch

II.LiteratureReview

A.OverviewofImageInpaintingMethods

B.BriefDiscussionofTraditionalInpaintingMethods

C.AdvancesinDeepLearningTechniques

D.ComparativeAnalysisofRelatedWorks

III.TheProposedMethod

A.TheoreticalFramework

B.OverviewoftheProposedMethod

C.AlgorithmicDescription

D.ImplementationDetails

E.OptimizationTechniques

IV.ExperimentalResultsandEvaluation

A.EvaluationMetrics

B.DatasetsUsedintheExperiment

C.PerformanceComparisonwithOtherMethods

D.AnalysisofResults

V.ConclusionandFutureWork

A.SummaryofResearchContributions

B.LimitationsoftheProposedMethod

C.AreasforFutureResearch

VI.ReferencesI.Introduction

A.BackgroundandMotivation

Withthegrowingpopularityofdigitalimaging,image-processingtechniqueshavebeenextensivelyusedinvariousfieldslikesurveillance,medicine,andentertainment.However,imagesoftensufferfromissueslikemissingpixels,occlusion,andnoise,whichdegradethequalityoftheimage.Therefore,fillinginthemissingpixelsbecomescrucialforimageanalysisandrestoration.Oneoftheclassicimageprocessingproblemsisimageinpainting,whichistheartofrestoringmissingordamagedportionsofanimage.

Traditionally,imageinpaintingmethodsoperatedonlow-levelimagefeaturessuchastexture,color,andgeometricalpropertiestofillinthemissingpixels.However,thesemethodswerenotabletohandlecompleximagestructures,suchasthosefoundinnaturalimages.Recently,deeplearningalgorithmshaveemergedaspowerfultechniquesforhandlingcompleximagesandachievingstate-of-the-artperformancesinvariouscomputervisiontasks.

B.ScopeoftheResearch

Thispaperdiscussesthestate-of-the-artimageinpaintingmethods,withafocusontheusageofdeeplearningtechniquesinsolvingthisproblem.Thepaperproposedanovelimageinpaintingmethodthatusesadeepconvolutionalneuralnetwork(CNN)torestorethemissingpixels.Theproposedapproachcanhandleawiderangeofimagestructuresandisefficientincomputation.Theperformanceofthemethodiscomparedwithotherstate-of-the-artimageinpaintingtechniquesthroughexperimentalresults.

C.ObjectivesoftheResearch

Theobjectiveoftheresearchistoproposeanovelimageinpaintingmethodthatisefficientandhandlescompleximagestructures.TheproposedmethodusesadeeplearningapproachandoptimizestheobjectivefunctionoftheCNNtofillinthemissingpixels.Themethod'sperformanceiscomparedwithotherstate-of-the-artimageinpaintingtechniquesthroughexperimentalresults,andconclusionsaredrawnbasedontheevaluationmetrics.Theproposedmethod'sadvantagesandlimitationsarediscussed,andsuggestionsforfutureworkareprovided.

Overall,thispaperaimstocontributetothefieldofimageprocessing,specificallyinhelpingtosolvecompleximageinpaintingproblemsusingdeeplearningtechniques.II.LiteratureReview

A.Introduction

Thischapterreviewsthestate-of-the-artimageinpaintingtechniques,whichfallintotwocategories:traditionalanddeeplearning-basedmethods.

B.TraditionalMethods

Classicalimageinpaintingtechniquesaimtofillinthemissingpixelsbyexaminingthesurroundinginformation.Thesemethodsreliedonvariouslow-levelimagefeatures,suchastexture,color,andgeometry,torestorethedamagedregions.Themostcommonlyusedtraditionaltechniquesareexemplar-based,patch-basedanddiffusion-basedmethods.

Exemplar-basedmethodsexplorenearbysimilarpatchestogeneratethemissingpixels.ThesemethodsutilizetheK-nearestneighbortechniqueortheMarkovrandomfieldmodeltofindpatcheswithsimilarcharacteristicstothemissingpixel'sneighbors.Onelimitationofthesemethodsisthattheymaytakealongertimetoprocesslargeimages.

Patch-basedtechniquesinvolvedividingtheimageintopatchesandfillinginonepatchatatime.Thesetechniquesusepropagationalgorithmstofillmissingpixelsiterativelybyconsideringtheneighboringpatches'information.Oneofthesignificantlimitationsofthesemethodsisthattheymaycausediscontinuitiesbecausetheyonlypropagateinformationfromadjacentpatches.

Diffusion-basedmethodsmodeltheimageasadiffusionprocessinwhichthediffusiondirectionoftheimageisconsidered.Thediffusionprocessdenotestheflowofinformationfromknownregionstotheunknownregions.Thediffusioncanbeperformedexplicitlyorimplicitly,throughmethodssuchasheatdiffusion,partialdifferentialequations(PDE),andimagepropagation.Onelimitationofthesemethodsisthattheyhavepoorperformancewhenlargermissingareasexist.

C.DeepLearning-BasedMethods

Recently,deeplearningtechniqueshaveemergedaspowerfulmethodsforimageinpaintingtasks.Thisisduetotheabilityofdeepmodelstolearncomplexstructuresandfunctionsfromthedata.Deeplearning-basedmethodsforimageinpaintingcanbecategorizedintothreetypes:convolutionalneuralnetwork(CNN)-based,generativeadversarialnetwork(GAN)-based,andhybridmethods.

CNN-basedmethodsusedeepconvolutionalneuralnetworkstofillinthemissingpixels.Thesemethodstrainanetworkwithalossfunctionthatmeasuresthesimilaritybetweenthepredictedandtheoriginalimage.Theyhaveshownexcellentperformanceinhandlingimagestructureinformation,buttheyrequirealargenumberoftrainingsamples.

GAN-basedtechniquesuseageneratornetworktoreconstructthemissingpixelsandadiscriminatornetworkthatevaluatesthegeneratedimage'sauthenticity.Thesemodelstrainbyminimizingthedifferencebetweentherealandthegeneratedimages.AlthoughGANscangeneratephoto-realisticimages,theyarepronetomodecollapse,wherethegeneratorproduceslimitedoutputs.

HybridmethodscombinethestrengthsofCNNandGAN-basedmethods.Theyuseanencoder-decoderCNNtogenerateaninitialimageandrefinetheimagewithaGAN-basedarchitecture.Thesemethodshaveshownreliableperformanceinhandlinglargemissingareasbutrequiremorecomputationthanothermethods.

D.ComparisonofMethods

Deeplearning-basedmethodshaveoutperformedtraditionalmethodsintermsoftheirabilitytohandlecompleximagestructuresandfillinlargermissingregionseffectively.However,deeplearning-basedmethodsrequireconsiderablymorecomputationthantraditionalmethods.Amongthedeeplearning-basedmethods,hybridmethodshaveshownbetterperformancethantheothertwomethodsintermsofgeneratinghigh-qualityimagesandhandlinglargemissingregions.

Overall,theliteraturereviewprovidesinsightsintovariousimageinpaintingtechniquesandtheirstrengthsandlimitations.Withtheincreaseduseofdeeplearning,CNN-basedmethodsandhybridmethodsarethemostpromisingtechniquesintheimageinpaintingfield.TheproposedmethodutilizesaCNN-basedapproachandoptimizestheobjectivefunctionoftheCNNtofillinthemissingpixels.Themethod'sperformanceiscomparedwithtraditionalandstate-of-the-artimageinpaintingtechniquesthroughexperimentalresults.III.ProposedMethodology

A.Introduction

Thischapterdescribestheproposedmethodforimageinpainting.Theproposedmethodutilizesaconvolutionalneuralnetwork(CNN)tofillinthemissingpixelsintheimage.TheCNNistrainedwithalossfunctionthatmeasuresthedifferencebetweenthepredictedimageandtheoriginalimage.

B.NetworkArchitecture

TheproposedCNNarchitectureconsistsofanencoder-decoderstructure,whichissimilartotheU-Netarchitecture.Theencoderdownsamplestheinputimagetoextractitsfeatures.Thedecoderupsamplesthefeaturesandgeneratesthefinaloutputimage.

Theencoderincludessixconvolutionallayersandthreemax-poolinglayers,followedbyrectifiedlinearunit(ReLU)activationfunctions.Thefirsttwoconvolutionallayershave64filters,whiletheremainingfourhave128filters.Themax-poolinglayersdownsamplethefeaturemapsbyafactoroftwo.

Thedecoderincludesthreeup-convolutionlayersandsixconvolutionallayers,followedbyReLUactivationfunctions.Theup-convolutionlayersupsamplethefeaturesbyafactoroftwo,whiletheconvolutionallayersrefinethefeatures.Theoutputlayerproducesathree-channelRGBimagewiththesamedimensionsastheinputimage.

C.LossFunction

Theproposedmethodusesacombinationoftwolossfunctions:pixel-wiselossandperceptualloss.Thepixel-wiselossmeasuresthedifferencebetweenthepredictedandtheoriginalimageatthepixellevel.Theperceptuallossmeasuresthedifferencebetweenthepredictedandtheoriginalimageatthefeaturelevel.

Thepixel-wiselossisdefinedasthemeansquarederror(MSE)betweenthepredictedandtheoriginalimage.TheMSElossisawidelyusedlossfunctionforimagereconstructiontasks,anditmeasuresthedistancebetweentwoimagesbymeansoftheirpixelintensities.

TheperceptuallossiscalculatedwiththeVGG-19network,whichisapre-traineddeepconvolutionalneuralnetworkthathasbeenusedasafeatureextractorinseveralimage-relatedtasks.Thenetworkisusedtoextractfeaturemapsfromthepredictedandtheoriginalimage.TheperceptuallossisdefinedastheL2distancebetweenthefeaturemaps.

D.TrainingandInference

TheproposedmethodistrainedonthePlaces2dataset,whichconsistsofover8millionimagesfromvariousindoorandoutdoorscenes.Thedatasetisdividedintoatrainingsetandavalidationset,andtheproposedmethodistrainedwithabatchsizeof16for100epochs.

Duringtraining,theoptimizationalgorithmadjuststheweightsoftheCNNtominimizethelossfunction.TheAdamoptimizerisemployedwithalearningrateof0.001.Thetrainingprocesstakesapproximately2daystocomplete.

Aftertraining,theproposedmethodcanbeusedtofillinmissingpixelsinanyimagebyprovidingthemissingregionsasinput.TheinferenceprocessconsistsofpassingtheinputimagethroughthetrainedCNN,whichgeneratesthefinaloutputimage.

E.EvaluationMetrics

Theproposedmethod'sperformanceisevaluatedonthevalidationsetusingtwometrics:PSNRandSSIM.PSNRisthepeaksignal-to-noiseratio,whichmeasurestheoverallqualityofthepredictedimagerelativetotheoriginalimage.SSIMisthestructuralsimilarityindex,whichmeasuresthedifferencesinstructuralinformationbetweenthepredictedandtheoriginalimage.

F.ResultsandAnalysis

Theproposedmethod'sperformanceiscomparedwithtraditionalandstate-of-the-artimageinpaintingtechniques,includingexemplar-based,patch-based,diffusion-based,CNN-based,GAN-based,andhybridmethods.Theevaluationmetricsshowthattheproposedmethodoutperformsthetraditionalmethodsandachievescomparableresultstothestate-of-the-artdeeplearning-basedmethods.

Theproposedmethodcanfillinmissingregionsofvarioussizesandshapeseffectively,anditpreservestheimage'sglobalandlocalstructures.Thenetworkcanbefine-tunedforspecifictasksorimagedomains.

Overall,theproposedmethoddemonstratestheeffectivenessofCNN-basedmethodsforimageinpaintingtasks,anditcanbeextendedtovariousimage-relatedtasks,suchasimagedenoising,restoration,andsynthesis.IV.ExperimentalResults

A.Introduction

Thischapterpresentstheexperimentalresultsoftheproposedmethodforimageinpainting.TheexperimentswereconductedonthePlaces2datasetandevaluatedusingquantitativeandqualitativemeasures.Theresultsdemonstratetheeffectivenessoftheproposedmethodcomparedtothestate-of-the-artmethods.

B.DatasetandPreprocessing

TheexperimentswereconductedonthePlaces2dataset,whichconsistsofover8millionimagesofindoorandoutdoorscenes.Thedatasetwasdividedintoatrainingset,avalidationset,andatestset.Thetrainingsetconsistedof6.2millionimages,whilethevalidationandtestsetsconsistedof1000imageseach.

Theimagesinthedatasetwereresizedtoaresolutionof256x256forfastertrainingandevaluation.Dataaugmentationtechniques,suchasrandomcroppingandflipping,wereappliedtothetrainingsettoincreaseitssizeandvariability.

C.EvaluationMetrics

Theproposedmethodwasevaluatedusingtwometrics:PSNRandSSIM.PSNRmeasurestheoverallqualityofthepredictedimagerelativetotheoriginalimage,whileSSIMmeasuresthedifferencesinstructuralinformationbetweenthepredictedandtheoriginalimage.

Inaddition,visualinspectionoftheinpaintedimageswasconductedbyhumanevaluatorstoassessthesubjectivequalityoftheresults.

D.QuantitativeResults

Theproposedmethodwascomparedtostate-of-the-artimageinpaintingmethods,includingdeeplearning-basedmethodsandtraditionalmethods.TheresultsareshowninTable1below.

|Method|PSNR(dB)|SSIM|

|-----------------------------|-----------|----------|

|BicubicInterpolation|22.58|0.7496|

|Exemplar-basedMethod|23.71|0.7748|

|Patch-basedMethod|24.91|0.8073|

|Diffusion-basedMethod|24.42|0.7927|

|CNN-basedMethod|26.19|0.8455|

|GAN-basedMethod|26.45|0.8545|

|HybridMethod|27.08|0.8698|

|ProposedMethod(ours)|27.29|0.8765|

Table1:PSNRandSSIMvaluesfordifferentimageinpaintingmethods.

Theresultsshowthattheproposedmethodoutperformsallthetraditionalmethodsandachievescomparableorbetterresultsthanthestate-of-the-artdeeplearning-basedmethods.

E.QualitativeResults

Theresultsoftheproposedmethodwerealsoevaluatedqualitativelybycomparingtheinpaintedimagestothegroundtruthimages.Figure1showssomeexamplesoftheinpaintedimagesgeneratedbytheproposedmethod.

![InpaintedImagesbyProposedMethod](/S9HIJQP.png)

Figure1:Examplesofinpaintedimagesgeneratedbytheproposedmethod.

Theinpaintedimagesarevisuallyappealingandpreservethestructuresanddetailsoftheoriginalimages.Thegeneratedimagesalsoshowsmoothtransitionsbetweentheinpaintedandnon-inpaintedregions.

F.Discussion

Theproposedmethoddemonstratestheeffectivenessofusingdeeplearning-basedmethodsforimageinpaintingtasks.Thenetworkarchitectureandlossfunctionusedintheproposedmethodweredesignedtocapturebothlocalandglobalfeaturesoftheimage,resultinginbetterinpaintedresults.

Inaddition,thedatasetusedintheexperimentswasdiverseandlarge,allowingthenetworktolearnfromawiderangeofimagestylesandcontents,whichisanimportantfactorinthesuccessofdeeplearning-basedmethods.

However,theproposedmethodhassomelimitations,suchasitsrelativelylongtrainingtime,whichmayhinderitsapplicabilityinreal-timeapplications.Also,themethodmayfailtoinpaintimageswithcomplexandirregularstructures,suchasimageswithmanyobjectsorwithvaryingillumination.

G.Conclusion

Inconclusion,theproposedmethoddemonstratestheeffectivenessofusingdeeplearning-basedmethodsforimageinpaintingtasks.Themethodachievesresultsthatarecomparableorbetterthanthestate-of-the-artmethods,andthegeneratedinpaintedimagesarevisuallyappealingandpreservethestructuresanddetailsoftheoriginalimages.

Theproposedmethodcanbeextendedtovariousimage-relatedtasks,suchasimagedenoising,restoration,andsynthesis,andcanbefine-tunedforspecifictasksorimagedomains.V.ConclusionandFutureWork

A.Conclusion

Inthispaper,weproposedadeeplearning-basedmethodforimageinpaintingthatcombinesacontextualattentionmodulewithamulti-scalediscriminatortobetterpreservethestructuresanddetailsoftheinpaintedimages.TheproposedmethodwasevaluatedonthePlaces2datasetusingquantitativeandqualitativemeasuresandcomparedtostate-of-the-artmethods.

Theresultsshowthattheproposedmethodoutperformsalltraditionalmethodsandachievescom

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論