版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年吉林長(zhǎng)春市寬城區(qū)初三3月聯(lián)合檢測(cè)試題(數(shù)學(xué)試題文)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點(diǎn)坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)2.函數(shù)中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣23.不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個(gè)球,其中4個(gè)黑球、2個(gè)白球,從袋子中一次摸出3個(gè)球,下列事件是不可能事件的是()A.摸出的是3個(gè)白球 B.摸出的是3個(gè)黑球C.摸出的是2個(gè)白球、1個(gè)黑球 D.摸出的是2個(gè)黑球、1個(gè)白球4.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.5.已知∠BAC=45。,一動(dòng)點(diǎn)O在射線AB上運(yùn)動(dòng)(點(diǎn)O與點(diǎn)A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點(diǎn),那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>6.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號(hào)是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤7.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計(jì)自己眼睛距地面EF=1.5m,當(dāng)他站在F點(diǎn)時(shí)恰好看到大樹頂端C點(diǎn).已知此時(shí)他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m8.一次函數(shù)與二次函數(shù)在同一平面直角坐標(biāo)系中的圖像可能是()A. B. C. D.9.如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;③3a+c>0;④當(dāng)y>0時(shí),x的取值范圍是-1≤x<3;⑤當(dāng)x<0時(shí),y隨x增大而增大.其中結(jié)論正確的個(gè)數(shù)是()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)10.在﹣3,﹣1,0,1四個(gè)數(shù)中,比﹣2小的數(shù)是()A.﹣3 B.﹣1 C.0 D.1二、填空題(共7小題,每小題3分,滿分21分)11.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?”該問題的答案是______步.12.的相反數(shù)是______.13.在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標(biāo)為_______.
.14.圓錐的底面半徑為2,母線長(zhǎng)為6,則它的側(cè)面積為_____.15.拋物線y=mx2+2mx+5的對(duì)稱軸是直線_____.16.已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)值y與自變量x的部分對(duì)應(yīng)值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…則關(guān)于x的一元二次方程ax2+bx+c=-2的根是______.17.對(duì)角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形三、解答題(共7小題,滿分69分)18.(10分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10元/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16元/件,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?19.(5分)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.求證:BE=EC填空:①若∠B=30°,AC=2,則DE=______;②當(dāng)∠B=______度時(shí),以O(shè),D,E,C為頂點(diǎn)的四邊形是正方形.20.(8分)為了貫徹“減負(fù)增效”精神,掌握九年級(jí)600名學(xué)生每天的自主學(xué)習(xí)情況,某校學(xué)生會(huì)隨機(jī)抽查了九年級(jí)的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時(shí)間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息回答下列問題:(1)本次調(diào)查的學(xué)生人數(shù)是人;(2)圖2中α是度,并將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)請(qǐng)估算該校九年級(jí)學(xué)生自主學(xué)習(xí)時(shí)間不少于1.5小時(shí)有人;(4)老師想從學(xué)習(xí)效果較好的4位同學(xué)(分別記為A、B、C、D,其中A為小亮)隨機(jī)選擇兩位進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)交流,用列表法或樹狀圖的方法求出選中小亮A的概率.21.(10分)如圖,在Rt△ABC中,∠C=90°,O為BC邊上一點(diǎn),以O(shè)C為半徑的圓O,交AB于D點(diǎn),且AD=AC,延長(zhǎng)DO交圓O于E點(diǎn),連接AE.求證:DE⊥AB;若DB=4,BC=8,求AE的長(zhǎng).22.(10分)如圖,一次函數(shù)y=2x﹣4的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為1.(1)求反比例函數(shù)的解析式;(2)點(diǎn)P是x軸上一動(dòng)點(diǎn),△ABP的面積為8,求P點(diǎn)坐標(biāo).23.(12分)如圖,已知AD是的中線,M是AD的中點(diǎn),過A點(diǎn)作,CM的延長(zhǎng)線與AE相交于點(diǎn)E,與AB相交于點(diǎn)F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.24.(14分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長(zhǎng).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點(diǎn)坐標(biāo).詳解:當(dāng)或時(shí),,當(dāng)時(shí),,,解得,二次函數(shù)解析式為,拋物線的頂點(diǎn)坐標(biāo)為,故選C.點(diǎn)睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.2、B【解析】要使有意義,所以x+1≥0且x+1≠0,
解得x>-1.
故選B.3、A【解析】由題意可知,不透明的袋子中總共有2個(gè)白球,從袋子中一次摸出3個(gè)球都是白球是不可能事件,故選B.4、C【解析】
根據(jù)全等三角形的判定定理進(jìn)行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對(duì)應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個(gè)小三角形全等,故本選項(xiàng)符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個(gè)小三角形全等,故本選項(xiàng)不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點(diǎn)睛】本題考查了全等三角形的判定,注意三角形邊和角的對(duì)應(yīng)關(guān)系是關(guān)鍵.5、C【解析】如下圖,設(shè)⊙O與射線AC相切于點(diǎn)D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時(shí)⊙O與射線AC有唯一公共點(diǎn)點(diǎn)D,若⊙O再向右移動(dòng),則⊙O與射線AC就沒有公共點(diǎn)了,∴x的取值范圍是.故選C.6、C【解析】
根據(jù)二次函數(shù)的性質(zhì)逐項(xiàng)分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當(dāng)x=1時(shí),y=a+b+c<0,正確;②當(dāng)x=-1時(shí),y=a-b+c>1,正確;③abc>0,正確;④對(duì)稱軸x=-1,則x=-2和x=0時(shí)取值相同,則4a-2b+c=1>0,錯(cuò)誤;⑤對(duì)稱軸x=-=-1,b=2a,又x=-1時(shí),y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號(hào)是①②③⑤.故選C7、B【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出GH的長(zhǎng)即BD的長(zhǎng)即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中抽象出相似三角形.8、D【解析】
本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點(diǎn)應(yīng)為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點(diǎn)也應(yīng)為(0,c),圖象不符合,故本選項(xiàng)錯(cuò)誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項(xiàng)錯(cuò)誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點(diǎn)相同,故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查拋物線和直線的性質(zhì),用假設(shè)法來搞定這種數(shù)形結(jié)合題是一種很好的方法.9、B【解析】
解:∵拋物線與x軸有2個(gè)交點(diǎn),∴b2﹣4ac>0,所以①正確;∵拋物線的對(duì)稱軸為直線x=1,而點(diǎn)(﹣1,0)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(3,0),∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時(shí),y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯(cuò)誤;∵拋物線與x軸的兩點(diǎn)坐標(biāo)為(﹣1,0),(3,0),∴當(dāng)﹣1<x<3時(shí),y>0,所以④錯(cuò)誤;∵拋物線的對(duì)稱軸為直線x=1,∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小:當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置:當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)位置:拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定:△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒有交點(diǎn).10、A【解析】
因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對(duì)值越大,本身就越小,根據(jù)有理數(shù)比較大小的法則即可選出答案.【詳解】因?yàn)檎龜?shù)是比0大的數(shù),負(fù)數(shù)是比0小的數(shù),正數(shù)比負(fù)數(shù)大;負(fù)數(shù)的絕對(duì)值越大,本身就越小,所以在-3,-1,0,1這四個(gè)數(shù)中比-2小的數(shù)是-3,故選A.【點(diǎn)睛】本題主要考查有理數(shù)比較大小,解決本題的關(guān)鍵是要熟練掌握比較有理數(shù)大小的方法.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.12、﹣.【解析】
根據(jù)只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相反數(shù),解題關(guān)鍵是熟記相反數(shù)的概念.13、A3()【解析】
設(shè)直線y=與x軸的交點(diǎn)為G,過點(diǎn)A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據(jù)等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標(biāo).【詳解】設(shè)直線y=與x軸的交點(diǎn)為G,
令y=0可解得x=-4,
∴G點(diǎn)坐標(biāo)為(-4,0),
∴OG=4,
如圖1,過點(diǎn)A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,
∵△A1B1O為等腰直角三角形,
∴A1D=OD,
又∵點(diǎn)A1在直線y=x+上,
∴=,即=,解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F==()2,則OF=5+=,
∴A3(,);故答案為(,)【點(diǎn)睛】本題主要考查等腰三角形的性質(zhì)和直線上點(diǎn)的坐標(biāo)特點(diǎn),根據(jù)題意找到點(diǎn)的坐標(biāo)的變化規(guī)律是解題的關(guān)鍵,注意觀察數(shù)據(jù)的變化.14、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長(zhǎng)為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點(diǎn):圓錐的計(jì)算.15、x=﹣1【解析】
根據(jù)拋物線的對(duì)稱軸公式可直接得出.【詳解】解:這里a=m,b=2m∴對(duì)稱軸x=故答案為:x=-1.【點(diǎn)睛】解答本題關(guān)鍵是識(shí)記拋物線的對(duì)稱軸公式x=.16、x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函數(shù)值都是﹣5,相等,∴二次函數(shù)的對(duì)稱軸為直線x=﹣1.∵x=﹣4時(shí),y=﹣1,∴x=2時(shí),y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案為x1=﹣4,x1=2.點(diǎn)睛:本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)的對(duì)稱性,讀懂圖表信息,求出對(duì)稱軸解析式是解題的關(guān)鍵.17、B【解析】
根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對(duì)角線互相平分的四邊形是平行四邊形,對(duì)角線相等的平行四邊形是矩形,∴對(duì)角線相等且互相平分的四邊形一定是矩形.故選B.【點(diǎn)睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡(jiǎn)單,解題的關(guān)鍵是熟記定理.三、解答題(共7小題,滿分69分)18、(1)y=-x+40(10≤x≤16);(2)每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.【解析】
根據(jù)題可設(shè)出一般式,再由圖中數(shù)據(jù)帶入可得答案,根據(jù)題目中的x的取值可得結(jié)果.②由總利潤(rùn)=數(shù)量×單間商品的利潤(rùn)可得函數(shù)式,可得解析式為一元二次式,配成頂點(diǎn)式可求出最大利潤(rùn)時(shí)的銷售價(jià),即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據(jù)題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當(dāng)x<25時(shí),W隨x的增大而增大∵10≤x≤16∴當(dāng)x=16時(shí),W取得最大值,最大值是144答:每件銷售價(jià)為16元時(shí),每天的銷售利潤(rùn)最大,最大利潤(rùn)是144元.【點(diǎn)睛】熟悉掌握?qǐng)D中所給信息以及列方程組是解決本題的關(guān)鍵.19、(1)見解析;(2)①3;②1.【解析】
(1)證出EC為⊙O的切線;由切線長(zhǎng)定理得出EC=ED,再求得EB=ED,即可得出結(jié)論;(2)①由含30°角的直角三角形的性質(zhì)得出AB,由勾股定理求出BC,再由直角三角形斜邊上的中線性質(zhì)即可得出DE;②由等腰三角形的性質(zhì),得到∠ODA=∠A=1°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結(jié)論.【詳解】(1)證明:連接DO.∵∠ACB=90°,AC為直徑,∴EC為⊙O的切線;又∵ED也為⊙O的切線,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC為直徑,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案為3;②當(dāng)∠B=1°時(shí),四邊形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四邊形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案為1.【點(diǎn)睛】本題考查了圓的切線性質(zhì)、解直角三角形的知識(shí)、切線長(zhǎng)定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.20、(1)40;(2)54,補(bǔ)圖見解析;(3)330;(4).【解析】
(1)根據(jù)由自主學(xué)習(xí)的時(shí)間是1小時(shí)的人數(shù)占30%,可求得本次調(diào)查的學(xué)生人數(shù);(2),由自主學(xué)習(xí)的時(shí)間是0.5小時(shí)的人數(shù)為40×35%=14;(3)求出這40名學(xué)生自主學(xué)習(xí)時(shí)間不少于1.5小時(shí)的百分比乘以600即可;(4)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與選中小亮A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵自主學(xué)習(xí)的時(shí)間是1小時(shí)的有12人,占30%,∴12÷30%=40,故答案為40;(2),故答案為54;自主學(xué)習(xí)的時(shí)間是0.5小時(shí)的人數(shù)為40×35%=14;補(bǔ)充圖形如圖:(3)600×=330;故答案為330;(4)畫樹狀圖得:∵共有12種等可能的結(jié)果,選中小亮A的有6種可能,∴P(A)=.21、(1)詳見解析;(2)6【解析】
(1)連接CD,證明即可得到結(jié)論;(2)設(shè)圓O的半徑為r,在Rt△BDO中,運(yùn)用勾股定理即可求出結(jié)論.【詳解】(1)證明:連接CD,∵∴∵∴.(2)設(shè)圓O的半徑為,,設(shè).【點(diǎn)睛】本題綜合考查了切線的性質(zhì)和判定及勾股定理的綜合運(yùn)用.綜合性比較強(qiáng),對(duì)于學(xué)生的能力要求比較高.22、(1)y=;(2)(4,0)或(0,0)【解析】
(1)把x=1代入一次函數(shù)解析式求得A的坐標(biāo),利用待定系數(shù)法求得反比例函數(shù)解析式;(2)解一次函數(shù)與反比例函數(shù)解析式組成的方程組求得B的坐標(biāo),后利用△ABP的面積為8,可求P點(diǎn)坐標(biāo).【詳解】解:(1)把x=1代入y=2x﹣4,可得y=2×1﹣4=2,∴A(1,2),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安置房爆破施工合同
- 建筑工程建設(shè)中的給排水管道防滲漏施工分析
- 石河子大學(xué)《園林綠地系統(tǒng)規(guī)劃》2022-2023學(xué)年第一學(xué)期期末試卷
- 國(guó)慶假期防溺水教育活動(dòng)總結(jié)7篇
- 學(xué)校運(yùn)動(dòng)場(chǎng)改造施工組織設(shè)計(jì)
- 石河子大學(xué)《籃球教學(xué)訓(xùn)練理論與實(shí)踐》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《工業(yè)藥劑學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《健身指導(dǎo)與訓(xùn)練》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《數(shù)字圖像處理技術(shù)》2022-2023學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《馬克思主義與社會(huì)科學(xué)方法論》2021-2022學(xué)年第一學(xué)期期末試卷
- VDA6.3過程審核員培訓(xùn)考核試卷及答案(一)
- 電阻焊原理及工藝(壓力焊技術(shù)知識(shí)全案)
- 工程制圖 第4章 截交線和相貫線
- 新高考高中家長(zhǎng)會(huì)課件
- 城市介紹(重慶)課件
- 六年級(jí)上冊(cè)數(shù)學(xué)總復(fù)習(xí)看圖列式計(jì)算題
- 常用的氮肥硫酸銨課件
- 2022版義務(wù)教育(科學(xué))課程標(biāo)準(zhǔn)(含2022年新增和修訂部分)
- 土石方報(bào)告模板
- JC01基礎(chǔ)心理學(xué)單科作業(yè)題匯總(含解析)
- 養(yǎng)老院院內(nèi)感染防控員課件
評(píng)論
0/150
提交評(píng)論