![遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題含解析_第1頁](http://file4.renrendoc.com/view/557a5c5dbe10e6c678c968a7a29a67e5/557a5c5dbe10e6c678c968a7a29a67e51.gif)
![遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題含解析_第2頁](http://file4.renrendoc.com/view/557a5c5dbe10e6c678c968a7a29a67e5/557a5c5dbe10e6c678c968a7a29a67e52.gif)
![遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題含解析_第3頁](http://file4.renrendoc.com/view/557a5c5dbe10e6c678c968a7a29a67e5/557a5c5dbe10e6c678c968a7a29a67e53.gif)
![遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題含解析_第4頁](http://file4.renrendoc.com/view/557a5c5dbe10e6c678c968a7a29a67e5/557a5c5dbe10e6c678c968a7a29a67e54.gif)
![遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題含解析_第5頁](http://file4.renrendoc.com/view/557a5c5dbe10e6c678c968a7a29a67e5/557a5c5dbe10e6c678c968a7a29a67e55.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省昌圖縣市級名校2022-2023學年初三第二次適應性訓練數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°2.二次函數y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)3.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數是()A.1個 B.2個 C.3個 D.4個4.已知A樣本的數據如下:72,73,76,76,77,78,78,78,B樣本的數據恰好是A樣本數據每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數 B.標準差 C.中位數 D.眾數5.已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P,若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤6.如圖,雙曲線y=(k>0)經過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.67.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.8.如圖是我市4月1日至7日一周內“日平均氣溫變化統(tǒng)計圖”,在這組數據中,眾數和中位數分別是()A.13;13 B.14;10 C.14;13 D.13;149.下列各式屬于最簡二次根式的有()A. B. C. D.10.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°二、填空題(共7小題,每小題3分,滿分21分)11.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.12.函數y=的自變量x的取值范圍是_____.13.計算:(3+1)(3﹣1)=.14.分解因式:a2-2ab+b2-1=______.15.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮(zhèn)C.小明發(fā)現古鎮(zhèn)C恰好在A地的正北方向,則B、C兩地的距離是_____千米.16.解不等式組,則該不等式組的最大整數解是_____.17.如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續(xù)旋轉2017次后,點P的坐標為____________________.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.19.(5分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.20.(8分)濟南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關系可以近似的用二次函數來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據表中數據求出二次函數的表達式.現測量出滑雪者的出發(fā)點與終點的距離大約840m,他需要多少時間才能到達終點?將得到的二次函數圖象補充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數表達式.21.(10分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數;(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數.22.(10分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點,AC∥OP,M是直徑AB上的動點,A與直線CM上的點連線距離的最小值為d,B與直線CM上的點連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設OP=AC,求∠CPO的正弦值;(3)設AC=9,AB=15,求d+f的取值范圍.23.(12分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)24.(14分)某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據以上信息,解答下列問題:類學生有人,補全條形統(tǒng)計圖;類學生人數占被調查總人數的%;從該班做義工時間在的學生中任選2人,求這2人做義工時間都在中的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據平行線的性質得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質的應用,能正確作出輔助線是解此題的關鍵.2、B【解析】
由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).3、C【解析】
從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數的圖象解決實際問題,正確理解函數圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數問題的相應解決.需注意計算單位的統(tǒng)一.4、B【解析】試題分析:根據樣本A,B中數據之間的關系,結合眾數,平均數,中位數和標準差的定義即可得到結論:設樣本A中的數據為xi,則樣本B中的數據為yi=xi+2,則樣本數據B中的眾數和平均數以及中位數和A中的眾數,平均數,中位數相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.5、D【解析】
①首先利用已知條件根據邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯誤的;
③利用全等三角形的性質和對頂角相等即可判定③說法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計算即可判定;
⑤連接BD,根據三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯誤的;
因為△APD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【點睛】考查了正方形的性質、全等三角形的性質與判定、三角形的面積及勾股定理,綜合性比較強,解題時要求熟練掌握相關的基礎知識才能很好解決問題.6、B【解析】
先根據矩形的特點設出B、C的坐標,根據矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數法即可求出反比例函數的解析式.【詳解】解:如圖:連接OE,設此反比例函數的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數中比例系數k的幾何意義,涉及到矩形的性質及用待定系數法求反比例函數的解析式,難度適中.7、C【解析】
由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.8、C【解析】
根據統(tǒng)計圖,利用眾數與中位數的概念即可得出答案.【詳解】從統(tǒng)計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數為13故選:C.【點睛】本題主要考查中位數和眾數,掌握中位數和眾數的求法是解題的關鍵.9、B【解析】
先根據二次根式的性質化簡,再根據最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.10、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題(共7小題,每小題3分,滿分21分)11、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.12、x≥﹣且x≠1【解析】分析:根據被開方數大于等于0,分母不等于0列式求解即可.詳解:根據題意得2x+1≥0,x-1≠0,解得x≥-且x≠1.故答案為x≥-且x≠1.點睛:本題主要考查了函數自變量的取值范圍的確定,根據分母不等于0,被開方數大于等于0列式計算即可,是基礎題,比較簡單.13、1.【解析】
根據平方差公式計算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點睛】本題考查的是二次根式的混合運算,掌握平方差公式、二次根式的性質是解題的關鍵.14、(a-b+1)(a-b-1)【解析】
當被分解的式子是四項時,應考慮運用分組分解法進行分解,前三項a2-2ab+b2可組成完全平方公式,再和最后一項用平方差公式分解.【詳解】a2-2ab+b2-1,
=(a-b)2-1,
=(a-b+1)(a-b-1).【點睛】本題考查用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題前三項可組成完全平方公式,可把前三項分為一組,分解一定要徹底.15、3【解析】
作BE⊥AC于E,根據正弦的定義求出BE,再根據正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數的定義是解題的關鍵.16、x=1.【解析】
先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數解.【詳解】,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數解為0,1,2,1,則該不等式組的最大整數解是x=1.故答案為:x=1.【點睛】考查不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.17、(6053,2).【解析】
根據前四次的坐標變化總結規(guī)律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發(fā)現點P的位置4次一個循環(huán),∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉;規(guī)律型:點的坐標.三、解答題(共7小題,滿分69分)18、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】
(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質;2.二次函數動點問題;3.一次函數與二次函數綜合題.19、(1)詳見解析;(2)①67.5°;②90°.【解析】
(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據四邊形ADFP是菱形和菱形的性質,可以求得∠DAE的度數;②根據四邊形BFDP是正方形,可以求得∠DAE的度數.【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質、切線的性質、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質和正方形的性質解答.20、(1)20s;(2)【解析】
(1)利用待定系數法求出函數解析式,再求出y=840時x的值即可得;(2)根據“上加下減,左加右減”的原則進行解答即可.【詳解】解:(1)∵該拋物線過點(0,0),∴設拋物線解析式為y=ax2+bx,將(1,4)、(2,12)代入,得:,解得:,所以拋物線的解析式為y=2x2+2x,當y=840時,2x2+2x=840,解得:x=20(負值舍去),即他需要20s才能到達終點;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2個單位,再向下平移5個單位后函數解析式為y=2(x+2+)2﹣﹣5=2(x+)2﹣.【點睛】本題主要考查二次函數的應用,解題的關鍵是掌握待定系數法求函數解析式及函數圖象平移的規(guī)律.21、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】
(1)根據軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質,軸對稱的性質,等腰三角形的性質
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淺談水利工程的安全運行與管理
- 2025年鐵罐蠟行業(yè)深度研究分析報告
- 耐熱布行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 假發(fā)產品采購合同范例
- 個人裝飾合同范本
- 修路材料購買合同范本
- 2025年度鍋爐設備環(huán)保排放達標技術服務合同范本
- 劇院管理務實項目管理制度
- 農村代理記賬合同范本
- 個人房屋修建合同范本
- 2025年大慶職業(yè)學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 山東省濟南市2024-2024學年高三上學期1月期末考試 地理 含答案
- 【課件】液體的壓強(課件)-2024-2025學年人教版物理八年級下冊
- 實施彈性退休制度暫行辦法解讀課件
- 冷凍食品配送售后服務體系方案
- 2024-2030年中國自動光學檢測儀(AOI)市場競爭格局與前景發(fā)展策略分析報告
- 2024-2025學年人教版數學八年級上冊期末模擬試卷
- 銷售培訓合同范例
- 財務工作總結與計劃-財務經理總結與計劃
- 發(fā)酵饅頭課件教學課件
- 中華護理學會團體標準-氣管切開非機械通氣患者氣道護理
評論
0/150
提交評論