石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題含解析_第1頁
石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題含解析_第2頁
石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題含解析_第3頁
石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題含解析_第4頁
石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

石家莊市裕華區(qū)40中學2023屆初三下第一次診斷考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°2.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.3.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或54.如圖,小明要測量河內小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.5.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆6.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m7.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷8.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間9.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.510.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.為了了解某班數(shù)學成績情況,抽樣調查了13份試卷成績,結果如下:3個140分,4個135分,2個130分,2個120分,1個100分,1個80分.則這組數(shù)據(jù)的中位數(shù)為______分.12.已知拋物線y=,那么拋物線在y軸右側部分是_________(填“上升的”或“下降的”).13.如果關于x的方程(m為常數(shù))有兩個相等實數(shù)根,那么m=______.14.含角30°的直角三角板與直線,的位置關系如圖所示,已知,∠1=60°,以下三個結論中正確的是____(只填序號).①AC=2BC②△BCD為正三角形③AD=BD15.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.16.如圖,隨機閉合開關,,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.三、解答題(共8題,共72分)17.(8分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.18.(8分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值19.(8分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.20.(8分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.21.(8分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.22.(10分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.23.(12分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據(jù)調查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目

頻數(shù)(人數(shù))

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?24.如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.2、B【解析】

根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,

A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關鍵.3、A【解析】

連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質和折疊的性質得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質,掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.4、B【解析】

解:過點B作BE⊥AD于E.設BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.5、B【解析】試題解析:由題意得,解得:.故選B.6、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應邊成比例求出GH的長即BD的長即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中抽象出相似三角形.7、B【解析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.8、C【解析】

求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.9、B【解析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內容是解題的關鍵.10、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

∵13份試卷成績,結果如下:3個140分,4個1分,2個130分,2個120分,1個100分,1個80分,∴第7個數(shù)是1分,∴中位數(shù)為1分,故答案為1.12、上升的【解析】

∵拋物線y=x2-1開口向上,對稱軸為x=0(y軸),

∴在y軸右側部分拋物線呈上升趨勢.故答案為:上升的.【點睛】本題考查的知識點是二次函數(shù)的性質,解題的關鍵是熟練的掌握二次函數(shù)的性質.13、1【解析】析:本題需先根據(jù)已知條件列出關于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個相等實數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為114、②③【解析】

根據(jù)平行線的性質以及等邊三角形的性質即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.【點睛】本題考查了平行的性質以及等邊三角形的性質,解題的關鍵是熟練運用平行線的性質,等邊三角形的性質,含30度角的直角三角形的性質,本題屬于中等題型.15、200【解析】

先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結論.【詳解】解:∵⊙O的直徑為1000mm,

∴OA=OA=500mm.

∵OD⊥AB,AB=800mm,

∴AC=400mm,

∴OC===300mm,∴CD=OD-OC=500-300=200(mm).

答:水的最大深度為200mm.故答案為:200【點睛】本題考查的是垂徑定理的應用,根據(jù)勾股定理求出OC的長是解答此題的關鍵.16、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結果,且每種結果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關為:K1、K3與K3、K1共兩種結果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應用】:8.【解析】

(1)先根據(jù)平行線的性質和等量代換得出∠1=∠3,再利用中線性質得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質結合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質結合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學生對平行線性質,平行四邊形性質的綜合應用能力,熟練掌握平行線的性質是解題的關鍵.18、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點睛:本題考查切線的性質、圓周角定理、垂徑定理、相似三角形的判定和性質、解直角三角形等知識,解題關鍵是靈活運用所學知識解決問題,屬于中考常考題型.19、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】

(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據(jù)等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質得到∠4=∠1,根據(jù)全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連接OD,∵CD是⊙O的切線,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切線;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四邊形ABCD是平行四邊形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴?ABCD是菱形.【點睛】此題主要考查了切線的性質,同角的余角相等,等腰三角形的性質,平行四邊形的判定和性質,菱形的判定,判斷出△ABO≌△CDE是解本題的關鍵.20、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據(jù)等腰三角形的性質以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關的綜合性題目,用到的知識點有三角形相似的判定和性質、等腰三角形的性質以及勾股定理的運用,靈活運用相似三角形的判定定理和性質定理是解題的關鍵,解答時,要仔細觀察圖形、選擇合適的判定方法,注意數(shù)形結合思想的運用.21、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質,可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形.AE=AB-BE=12-4=8,設DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,解得:x=1.則DE=4+1=2.【點睛】本題考查了全等三角形的判定和性質以及正方形的性質,解決本題的關鍵是注意每個題目之間的關系,正確作出輔助線.22、x=15,y=1【解析】

根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關系式;

(2)若往盒中再放進10顆黑色棋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論