高二年級數(shù)學(xué)的大小知識點歸納_第1頁
高二年級數(shù)學(xué)的大小知識點歸納_第2頁
高二年級數(shù)學(xué)的大小知識點歸納_第3頁
高二年級數(shù)學(xué)的大小知識點歸納_第4頁
高二年級數(shù)學(xué)的大小知識點歸納_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高二年級數(shù)學(xué)的大小知識點歸納

(1)挨次構(gòu)造:挨次構(gòu)造是最簡潔的算法構(gòu)造,語句與語句之間,框與框之間是按從上到下的挨次進展的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種根本算法構(gòu)造。

挨次構(gòu)造在程序框圖中的表達就是用流程線將程序框自上而下地連接起來,按挨次執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所

指定的操作。

(2)條件構(gòu)造:條件構(gòu)造是指在算法中通過對條件的推斷依據(jù)條件是否成立而選擇不同流向的

算法構(gòu)造。

條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不行能同時執(zhí)行

A框和B框,也不行能A框、B框都不執(zhí)行。一個推斷構(gòu)造可以有多個推斷框。

(3)循環(huán)構(gòu)造:在一些算法中,常常會消失從某處開頭,根據(jù)肯定條件,反復(fù)執(zhí)行某一處理步驟的狀況,這就是循環(huán)構(gòu)造,反復(fù)執(zhí)行的處理步驟為循環(huán)體,明顯,循環(huán)構(gòu)造中肯定包含條件構(gòu)造。循環(huán)構(gòu)造又稱重復(fù)構(gòu)造,循環(huán)構(gòu)造可細分為兩類:

①一類是當(dāng)型循環(huán)構(gòu)造,如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再推斷條件P是否成立,假如仍舊成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)構(gòu)造。

②另一類是直到型循環(huán)構(gòu)造,如下右圖所示,它的功能是先執(zhí)行,然后推斷給定的條件P是否成立,假如P仍舊不成立,則連續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)構(gòu)造。

留意:

1循環(huán)構(gòu)造要在某個條件下終止循環(huán),這就需要條件構(gòu)造來推斷。因此,循環(huán)構(gòu)造中肯定包含條件構(gòu)造,但不允許“死循環(huán)”。

2在循環(huán)構(gòu)造中都有一個計數(shù)變量和累

加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。

高二年級數(shù)學(xué)的大小學(xué)問點歸納2

(1)必定大事:在條件S下,肯定會發(fā)生的大事,叫相對于條件S的必定大事;

(2)不行能大事:在條件S下,肯定不會發(fā)生的大事,叫相對于條件S的不行能大事;

(3)確定大事:必定大事和不行能大事統(tǒng)稱為相對于條件S確實定大事;

(4)隨機大事:在條件S下可能發(fā)生也可能不發(fā)生的大事,叫相對于條件S的隨機大事;

(5)頻數(shù)與頻率:在一樣的條件S下重復(fù)n次試驗,觀看某一大事A是否消失,稱n次試驗中大事A消失的次數(shù)nA為大事A消失的頻數(shù);稱大事A消失的比例fn(A)=nnA為大事A消失的概率:對于給定的隨機大事A,假如隨著試驗次數(shù)的增加,大事A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為大事A的概率。

(6)頻率與概率的區(qū)分與聯(lián)系:隨機大事的頻率,指此大事發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有肯定的穩(wěn)定性,總在某個常數(shù)四周搖擺,且隨著試驗次數(shù)的不斷增多,這種搖擺幅度越來越小。我們把這個常數(shù)叫做隨機大事的概率,概率從數(shù)量上反映了隨機大事發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個大事的概率。

高二年級數(shù)學(xué)的大小學(xué)問點歸納3

異面直線定義:不同在任何一個平面內(nèi)的兩條直線

異面直線性質(zhì):既不平行,又不相交.

異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線相互垂直.

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特別的位置,頂點選在特別的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:假如一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有很多個公共點.

三種位置關(guān)系的符號表示:aαa∩α=Aaα

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ

相交——有一條公共直線.α∩β=b

2、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質(zhì)定理:假如一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平(面相)交,

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)假如一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)假如在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)假如兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

(2)假如兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

3、空間中的垂直問題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:假如兩條異面直線所成的角是直角,就說這兩條異面直線相互垂直.

線面垂直:假如一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

平面和平面垂直:假如兩個平面相交,所成的二面角(從一條直線動身的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關(guān)系的判定和性質(zhì)定理

線面垂直判定定理和性質(zhì)定理

判定定理:假如一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

性質(zhì)定理:假如兩條直線同垂直于一個平面,那么這兩條直線平行.

面面垂直的判定定理和性質(zhì)定理

判定定理:假如一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面相互垂直.

性質(zhì)定理:假如兩個平面相互垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

4、空間角問題

(1)直線與直線所成的角

兩平行直線所成的角:規(guī)定為.

兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,留意挖掘題設(shè)中主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

(3)二面角和二面角的平面角

二面角的定義:從一條直線動身的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論