2022年遼寧省沈陽市鐵西區(qū)中考數(shù)學全真模擬試題含解析_第1頁
2022年遼寧省沈陽市鐵西區(qū)中考數(shù)學全真模擬試題含解析_第2頁
2022年遼寧省沈陽市鐵西區(qū)中考數(shù)學全真模擬試題含解析_第3頁
2022年遼寧省沈陽市鐵西區(qū)中考數(shù)學全真模擬試題含解析_第4頁
2022年遼寧省沈陽市鐵西區(qū)中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩人分別以4m/s和5m/s的速度,同時從100m直線型跑道的起點向同一方向起跑,設乙的奔跑時間為t(s),甲乙兩人的距離為S(m),則S關于t的函數(shù)圖象為()A. B. C. D.2.一組數(shù)據是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據的眾數(shù)是()A.4 B.5 C.10 D.113.如圖是由四個相同的小正方形組成的立體圖形,它的俯視圖為()A. B. C. D.4.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°5.如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.66.實數(shù)的倒數(shù)是()A. B. C. D.7.某城市幾條道路的位置關系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°8.下列運算正確的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3?a5=a15 D.(a3)4=a79.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣210.設α,β是一元二次方程x2+2x-1=0的兩個根,則αβ的值是()A.2B.1C.-2D.-1二、填空題(本大題共6個小題,每小題3分,共18分)11.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數(shù)為奇數(shù)的概率是.12.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯(lián)結DC.如果AD=2,BD=6,那么△ADC的周長為.13.計算的結果是______.14.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.15.函數(shù),當x<0時,y隨x的增大而_____.16.分式方程=1的解為_____三、解答題(共8題,共72分)17.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.18.(8分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結果精確到米,,19.(8分)如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.(1)求證:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折疊后重疊部分的面積.20.(8分)如圖,矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點A出發(fā),以1厘米/秒的速度向D運動(不與D重合).設點P運動時間為t秒,請用t表示PD的長;并求t為何值時,四邊形PBQD是菱形.21.(8分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.22.(10分)某水果批發(fā)市場香蕉的價格如下表購買香蕉數(shù)(千克)不超過20千克20千克以上但不超過40千克40千克以上每千克的價格6元5元4元張強兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強第一次,第二次分別購買香蕉多少千克?23.(12分)已知關于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;24.拋一枚質地均勻六面分別刻有1、2、3、4、5、6點的正方體骰子兩次,若記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,則以方程組的解為坐標的點在第四象限的概率為_____.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

勻速直線運動的路程s與運動時間t成正比,s-t圖象是一條傾斜的直線解答.【詳解】∵甲、乙兩人分別以4m/s和5m/s的速度,∴兩人的相對速度為1m/s,設乙的奔跑時間為t(s),所需時間為20s,兩人距離20s×1m/s=20m,故選B.【點睛】此題考查函數(shù)圖象問題,關鍵是根據勻速直線運動的路程s與運動時間t成正比解答.2、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據眾數(shù)的定義可得這組數(shù)據的眾數(shù)是3.故選B.考點:3.眾數(shù);3.算術平均數(shù).3、B【解析】

根據俯視圖是從上往下看的圖形解答即可.【詳解】從上往下看到的圖形是:.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.4、C【解析】

這個扇形的圓心角的度數(shù)為n°,根據弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數(shù)為n°,根據題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).5、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標,結合反比例函數(shù)圖象上點的坐標特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是找出S△AOF=12S菱形OBCA6、D【解析】因為=,所以的倒數(shù)是.故選D.7、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點睛:本題考查了等腰三角形的性質,平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.8、B【解析】

根據同底數(shù)冪的乘法、除法、冪的乘方依次計算即可得到答案.【詳解】A、a3+a3=2a3,故A錯誤;B、a6÷a2=a4,故B正確;C、a3?a5=a8,故C錯誤;D、(a3)4=a12,故D錯誤.故選:B.【點睛】此題考查整式的計算,正確掌握同底數(shù)冪的乘法、除法、冪的乘方的計算方法是解題的關鍵.9、D【解析】

根據一元二次方程根與系數(shù)的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),

∴x1+x1,=-(k1-4)=0,解得k=±1,

當k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;

當k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;

∴k=-1.

故選D.【點睛】本題考查的是根與系數(shù)的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.10、D【解析】試題分析:∵α、β是一元二次方程x2+2x-1=0的兩個根,∴αβ=考點:根與系數(shù)的關系.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

根據題意可知,擲一次骰子有6個可能結果,而點數(shù)為奇數(shù)的結果有3個,所以點數(shù)為奇數(shù)的概率為.考點:概率公式.12、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數(shù),繼而求得∠ADC的度數(shù),則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質;2.等腰三角形的判定與性質.13、【解析】

二次根式的加減運算,先化為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.【詳解】.【點睛】考點:二次根式的加減法.14、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.15、減小【解析】

先根據反比例函數(shù)的性質判斷出函數(shù)的圖象所在的象限,再根據反比例函數(shù)的性質進行解答即可.【詳解】解:∵反比例函數(shù)中,∴此函數(shù)的圖象在一、三象限,在每一象限內y隨x的增大而減小.故答案為減小.【點睛】考查反比例函數(shù)的圖象與性質,反比例函數(shù)當時,圖象在第一、三象限.在每個象限,y隨著x的增大而減小,當時,圖象在第二、四象限.在每個象限,y隨著x的增大而增大.16、x=0.1【解析】分析:方程兩邊都乘以最簡公分母,化為整式方程,然后解方程,再進行檢驗.詳解:方程兩邊都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,檢驗:當x=0.1時,x﹣1=0.1﹣1=﹣0.1≠0,當x=1時,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案為:x=0.1點睛:本題考查了解分式方程,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.(2)解分式方程一定注意要驗根.三、解答題(共8題,共72分)17、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標,作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是能借助全等三角形確定一些相關線段的長.18、14.2米;【解析】

Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據CD=BC-BD可得關于AB的方程,解方程可得.【詳解】設米∵∠C=45°在中,米,,

又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度為米.【點睛】本題考查解直角三角形的應用-仰角俯角問題,解題的關鍵是利用數(shù)形結合的思想找出各邊之間的關系,然后找出所求問題需要的條件.19、(1)見解析;(2)1【解析】

(1)由矩形的性質可知∠A=∠C=90°,由翻折的性質可知∠A=∠F=90°,從而得到∠F=∠C,依據AAS證明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依據AB=4,tan∠ADB=,即可得到DC,BC的長,然后再Rt△EDC中利用勾股定理列方程,可求得BE的長,從而可求得重疊部分的面積.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折疊可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,設BE=DE=x,則CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【點睛】本題考查了折疊的性質、全等三角形的判定和性質以及勾股定理的綜合運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.20、(1)證明見解析(2)74【解析】試題分析:(1)先根據四邊形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根據O為BD的中點得出△POD≌△QOB,即可證得OP=OQ;(2)根據已知條件得出∠A的度數(shù),再根據AD=8cm,AB=6cm,得出BD和OD的長,再根據四邊形PBQD是菱形時,利用勾股定理即可求出t的值,判斷出四邊形PBQD是菱形.試題解析:(1)證明:因為四邊形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因為O為BD的中點,所以OB=OD,在△POD與△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因為四邊形PBQD是菱形,所以PD=BP=8-t,因為四邊形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即運動時間為74考點:矩形的性質;菱形的性質;全等三角形的判斷和性質勾股定理.21、(8+8)m.【解析】

利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AEC中,有AE=EC×tan30°=8m,∴AB=8+8(m).【點睛】本題考查了解直角三角形的應用-俯角、仰角問題,要求學生能借助其關系構造直角三角形并解直角三角形.22、第一次買14千克香蕉,第二次買36千克香蕉【解析】

本題兩個等量關系為:第一次買的千克數(shù)+第二次買的千克數(shù)=50;第一次出的錢數(shù)+第二次出的錢數(shù)=1.對張強買的香蕉的千克數(shù),應分情況討論:①當0<x≤20,y≤40;②當0<x≤20,y>40③當20<x<3時,則3<y<2.【詳解】設張強第一次購買香蕉xkg,第二次購買香蕉ykg,由題意可得0<x<3.則①當0<x≤20,y≤40,則題意可得.解得.②當0<x≤20,y>40時,由題意可得.解得.(不合題意,舍去)③當20<x<3時,則3<y<2,此時張強用去的款項為5x+5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論