版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
6.3等比數(shù)列【考試要求INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】1.理解等比數(shù)列的概念.2.掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.3.了解等比數(shù)列與指數(shù)函數(shù)的關(guān)系.INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【知識(shí)梳理INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】1.等比數(shù)列的有關(guān)概念(1)定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為eq\f(an+1,an)=q(n∈N*,q為非零常數(shù)).(2)等比中項(xiàng):如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng),此時(shí),G2=ab.2.等比數(shù)列的有關(guān)公式(1)通項(xiàng)公式:an=a1qn-1.(2)前n項(xiàng)和公式:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a11-qn,1-q)=\f(a1-anq,1-q),q≠1.))3.等比數(shù)列的性質(zhì)(1)通項(xiàng)公式的推廣:an=am·qn-m(m,n∈N*).(2)對(duì)任意的正整數(shù)m,n,p,q,若m+n=p+q=2k,則am·an=ap·aq=aeq\o\al(2,k).(3)若等比數(shù)列前n項(xiàng)和為Sn,則Sm,S2m-Sm,S3m-S2m仍成等比數(shù)列(m為偶數(shù)且q=-1除外).(4)在等比數(shù)列{an}中,等距離取出若干項(xiàng)也構(gòu)成一個(gè)等比數(shù)列,即an,an+k,an+2k,an+3k,…為等比數(shù)列,公比為qk.(5)若eq\b\lc\{\rc\(\a\vs4\al\co1(a1>0,,q>1))或eq\b\lc\{\rc\(\a\vs4\al\co1(a1<0,,0<q<1,))則等比數(shù)列{an}遞增.若eq\b\lc\{\rc\(\a\vs4\al\co1(a1>0,,0<q<1))或eq\b\lc\{\rc\(\a\vs4\al\co1(a1<0,,q>1,))則等比數(shù)列{an}遞減.INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【常用結(jié)論INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】1.若數(shù)列{an},{bn}(項(xiàng)數(shù)相同)是等比數(shù)列,則數(shù)列{c·an}(c≠0),{|an|},{aeq\o\al(2,n)},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an))),{an·bn},eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,bn)))也是等比數(shù)列.2.等比數(shù)列{an}的通項(xiàng)公式可以寫(xiě)成an=cqn,這里c≠0,q≠0.3.等比數(shù)列{an}的前n項(xiàng)和Sn可以寫(xiě)成Sn=Aqn-A(A≠0,q≠1,0).INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【思考辨析INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)等比數(shù)列的公比q是一個(gè)常數(shù),它可以是任意實(shí)數(shù).(×)(2)三個(gè)數(shù)a,b,c成等比數(shù)列的充要條件是b2=ac.(×)(3)數(shù)列{an}的通項(xiàng)公式是an=an,則其前n項(xiàng)和為Sn=eq\f(a1-an,1-a).(×)(4)數(shù)列{an}為等比數(shù)列,則S4,S8-S4,S12-S8成等比數(shù)列.(×)INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【教材題改編INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】1.已知{an}是等比數(shù)列,a2=2,a4=eq\f(1,2),則公比q等于()A.-eq\f(1,2)B.-2C.2D.±eq\f(1,2)答案D解析設(shè)等比數(shù)列的公比為q,∵{an}是等比數(shù)列,a2=2,a4=eq\f(1,2),∴a4=a2q2,∴q2=eq\f(a4,a2)=eq\f(1,4),∴q=±eq\f(1,2).2.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a11+2a6a8+a3a13=25,則a6+a8=______.答案5解析∵{an}是等比數(shù)列,且a1a11+2a6a8+a3a13=25,∴aeq\o\al(2,6)+2a6a8+aeq\o\al(2,8)=(a6+a8)2=25.又∵an>0,∴a6+a8=5.3.已知三個(gè)數(shù)成等比數(shù)列,若它們的和等于13,積等于27,則這三個(gè)數(shù)為_(kāi)_______.答案1,3,9或9,3,1解析設(shè)這三個(gè)數(shù)為eq\f(a,q),a,aq,則eq\b\lc\{\rc\(\a\vs4\al\co1(a+\f(a,q)+aq=13,,a·\f(a,q)·aq=27,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=3,,q=\f(1,3)))或eq\b\lc\{\rc\(\a\vs4\al\co1(a=3,,q=3,))∴這三個(gè)數(shù)為1,3,9或9,3,1.題型一等比數(shù)列基本量的運(yùn)算例1(1)(2020·全國(guó)Ⅱ)記Sn為等比數(shù)列{an}的前n項(xiàng)和.若a5-a3=12,a6-a4=24,則eq\f(Sn,an)等于()A.2n-1 B.2-21-nC.2-2n-1 D.21-n-1答案B解析方法一設(shè)等比數(shù)列{an}的公比為q,則q=eq\f(a6-a4,a5-a3)=eq\f(24,12)=2.由a5-a3=a1q4-a1q2=12a1=12,得a1=1.所以an=a1qn-1=2n-1,Sn=eq\f(a11-qn,1-q)=2n-1,所以eq\f(Sn,an)=eq\f(2n-1,2n-1)=2-21-n.方法二設(shè)等比數(shù)列{an}的公比為q,則eq\b\lc\{\rc\(\a\vs4\al\co1(a3q2-a3=12,①,a4q2-a4=24,②))eq\f(②,①)得eq\f(a4,a3)=q=2.將q=2代入①,解得a3=4.所以a1=eq\f(a3,q2)=1,下同方法一.(2)(2019·全國(guó)Ⅰ)記Sn為等比數(shù)列{an}的前n項(xiàng)和.若a1=eq\f(1,3),aeq\o\al(2,4)=a6,則S5=________.答案eq\f(121,3)解析設(shè)等比數(shù)列{an}的公比為q,因?yàn)閍eq\o\al(2,4)=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=eq\f(1,3),所以q=3,所以S5=eq\f(a11-q5,1-q)=eq\f(\f(1,3)×1-35,1-3)=eq\f(121,3).INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【備選INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INET】1.已知數(shù)列{an}為等比數(shù)列,a2=6,6a1+a3=30,則a4=________.答案54或24解析由eq\b\lc\{\rc\(\a\vs4\al\co1(a1·q=6,,6a1+a1·q2=30,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(q=3,,a1=2))或eq\b\lc\{\rc\(\a\vs4\al\co1(q=2,,a1=3,))a4=a1·q3=2×33=54或a4=3×23=3×8=24.2.已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,若a2a6=-2a7,S3=-6,則a6等于()A.-2或32 B.-2或64C.2或-32 D.2或-64答案B解析∵數(shù)列{an}為等比數(shù)列,a2a6=-2a7=a1a7,解得a1=-2,設(shè)數(shù)列的公比為q,S3=-6=-2-2q-2q2,解得q=-2或q=1,當(dāng)q=-2時(shí),則a6=(-2)6=64,當(dāng)q=1時(shí),則a6=-2.思維升華(1)等比數(shù)列中有五個(gè)量a1,n,q,an,Sn,一般可以“知三求二”,通過(guò)列方程(組)便可迎刃而解.(2)等比數(shù)列的前n項(xiàng)和公式涉及對(duì)公比q的分類討論,當(dāng)q=1時(shí),{an}的前n項(xiàng)和Sn=na1;當(dāng)q≠1時(shí),{an}的前n項(xiàng)和Sn=eq\f(a11-qn,1-q)=eq\f(a1-anq,1-q).跟蹤訓(xùn)練1(1)(2020·全國(guó)Ⅱ)數(shù)列{an}中,a1=2,am+n=aman,若ak+1+ak+2+…+ak+10=215-25,則k等于()A.2B.3C.4D.5答案C解析a1=2,am+n=aman,令m=1,則an+1=a1an=2an,∴{an}是以a1=2為首項(xiàng),q=2為公比的等比數(shù)列,∴an=2×2n-1=2n.又∵ak+1+ak+2+…+ak+10=215-25,∴eq\f(2k+11-210,1-2)=215-25,即2k+1(210-1)=25(210-1),∴2k+1=25,∴k+1=5,∴k=4.(2)(2020·新高考全國(guó)Ⅱ)已知公比大于1的等比數(shù)列{an}滿足a2+a4=20,a3=8.①求{an}的通項(xiàng)公式;②求a1a2-a2a3+…+(-1)n-1anan+1.解①設(shè){an}的公比為q(q>1).由題設(shè)得eq\b\lc\{\rc\(\a\vs4\al\co1(a1q+a1q3=20,,a1q2=8,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(q=2,,a1=2))或eq\b\lc\{\rc\(\a\vs4\al\co1(q=\f(1,2),,a1=32))(舍去).所以{an}的通項(xiàng)公式為an=2n,n∈N*.②由于(-1)n-1anan+1=(-1)n-1×2n×2n+1=(-1)n-122n+1,故a1a2-a2a3+…+(-1)n-1anan+1=23-25+27-29+…+(-1)n-1·22n+1=eq\f(23[1--22n],1--22)=eq\f(8,5)-(-1)neq\f(22n+3,5).題型二等比數(shù)列的判定與證明例2已知數(shù)列{an}滿足a1=1,nan+1=2(n+1)·an,設(shè)bn=eq\f(an,n).(1)求b1,b2,b3;(2)判斷數(shù)列{bn}是否為等比數(shù)列,并說(shuō)明理由;(3)求{an}的通項(xiàng)公式.解(1)由條件可得an+1=eq\f(2n+1,n)an.將n=1代入得,a2=4a1,而a1=1,所以a2=4.將n=2代入得,a3=3a2,所以a3=12.從而b1=1,b2=2,b3=4.(2){bn}是首項(xiàng)為1,公比為2的等比數(shù)列,由條件可得eq\f(an+1,n+1)=eq\f(2an,n),即bn+1=2bn,又b1=1,所以{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.(3)由(2)可得eq\f(an,n)=2n-1,所以an=n·2n-1.INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【備選INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足an+2=2an+1+3an.(1)證明:數(shù)列{an+an+1}為等比數(shù)列;(2)若a1=eq\f(1,2),a2=eq\f(3,2),求{an}的通項(xiàng)公式.(1)證明an+2=2an+1+3an,所以an+2+an+1=3(an+1+an),因?yàn)閧an}中各項(xiàng)均為正數(shù),所以an+1+an>0,所以eq\f(an+2+an+1,an+1+an)=3,所以數(shù)列{an+an+1}是公比為3的等比數(shù)列.(2)解由題意知an+an+1=(a1+a2)3n-1=2×3n-1,因?yàn)閍n+2=2an+1+3an,所以an+2-3an+1=-(an+1-3an),a2=3a1,所以a2-3a1=0,所以an+1-3an=0,故an+1=3an,所以4an=2×3n-1,an=eq\f(1,2)×3n-1.思維升華等比數(shù)列的三種常用判定方法(1)定義法:若eq\f(an+1,an)=q(q為非零常數(shù),n∈N*)或eq\f(an,an-1)=q(q為非零常數(shù)且n≥2,n∈N*),則{an}是等比數(shù)列.(2)等比中項(xiàng)法:若數(shù)列{an}中,an≠0且aeq\o\al(2,n+1)=an·an+2(n∈N*),則{an}是等比數(shù)列.(3)前n項(xiàng)和公式法:若數(shù)列{an}的前n項(xiàng)和Sn=k·qn-k(k為常數(shù)且k≠0,q≠0,1),則{an}是等比數(shù)列.跟蹤訓(xùn)練2Sn為等比數(shù)列{an}的前n項(xiàng)和,已知a4=9a2,S3=13,且公比q>0.(1)求an及Sn;(2)是否存在常數(shù)λ,使得數(shù)列{Sn+λ}是等比數(shù)列?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.解(1)易知q≠1,由題意可得eq\b\lc\{\rc\(\a\vs4\al\co1(a1q3=9a1q,,\f(a11-q3,1-q)=13,,q>0,))解得a1=1,q=3,∴an=3n-1,Sn=eq\f(1-3n,1-3)=eq\f(3n-1,2).(2)假設(shè)存在常數(shù)λ,使得數(shù)列{Sn+λ}是等比數(shù)列,∵S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13,∴(λ+4)2=(λ+1)(λ+13),解得λ=eq\f(1,2),此時(shí)Sn+eq\f(1,2)=eq\f(1,2)×3n,則eq\f(Sn+1+\f(1,2),Sn+\f(1,2))=eq\f(\f(1,2)×3n+1,\f(1,2)×3n)=3,故存在常數(shù)λ=eq\f(1,2),使得數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(Sn+\f(1,2)))是以eq\f(3,2)為首項(xiàng),3為公比的等比數(shù)列.題型三等比數(shù)列的性質(zhì)例3(1)若等比數(shù)列{an}中的a5,a2019是方程x2-4x+3=0的兩個(gè)根,則log3a1+log3a2+log3a3+…+log3a2023等于()A.eq\f(2024,3) B.1011C.eq\f(2023,2) D.1012答案C解析由題意得a5a2019=3,根據(jù)等比數(shù)列性質(zhì)知,a1a2023=a2a2022=…=a1011a1013=a1012a1012=3,于是a1012=,則log3a1+log3a2+log3a3+…+log3a2023=log3(a1a2a3…a2023)=log3=eq\f(2023,2).(2)已知數(shù)列{an}是等比數(shù)列,Sn為其前n項(xiàng)和,若a1+a2+a3=4,a4+a5+a6=8,則S12等于()A.40B.60C.32D.50答案B解析數(shù)列S3,S6-S3,S9-S6,S12-S9是等比數(shù)列,即4,8,S9-S6,S12-S9是等比數(shù)列,∴S12=4+8+16+32=60.INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\左括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\左括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\左括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\左括.TIF"INET【備選INCLUDEPICTURE"F:\\源文件\\2022\\一輪\\數(shù)學(xué)人教A版老高考\\右括.TIF"INCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\右括.TIF"INETINCLUDEPICTURE"E:\\2022看\\數(shù)學(xué)\\一輪\\春蘭\\數(shù)學(xué)人教A版理老教材(豫甘青寧新蒙貴桂川藏)\\word\\右括.TIF"INETINCLUDEPICTURE"E:\\張春蘭\\2022\\一輪\\數(shù)學(xué)\\數(shù)學(xué)人教A版文老教材\\全書(shū)完整的Word版文檔\\右括.TIF"INET】1.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若eq\f(S6,S3)=3,則eq\f(S9,S6)=__________.答案eq\f(7,3)解析設(shè)等比數(shù)列{an}的公比為q,易知q≠-1,由等比數(shù)列前n項(xiàng)和的性質(zhì)可知S3,S6-S3,S9-S6仍成等比數(shù)列,∴eq\f(S6-S3,S3)=eq\f(S9-S6,S6-S3),又由已知得S6=3S3,∴S9-S6=4S3,∴S9=7S3,∴eq\f(S9,S6)=eq\f(7,3).2.已知等比數(shù)列{an}共有2n項(xiàng),其和為-240,且奇數(shù)項(xiàng)的和比偶數(shù)項(xiàng)的和大80,則公比q=________.答案2解析由題意,得eq\b\lc\{\rc\(\a\vs4\al\co1(S奇+S偶=-240,,S奇-S偶=80,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(S奇=-80,,S偶=-160,))所以q=eq\f(S偶,S奇)=eq\f(-160,-80)=2.思維升華(1)等比數(shù)列的性質(zhì)可以分為三類:一是通項(xiàng)公式的變形,二是等比中項(xiàng)的變形,三是前n項(xiàng)和公式的變形,根據(jù)題目條件,認(rèn)真分析,發(fā)現(xiàn)具體的變化特征即可找出解決問(wèn)題的突破口.(2)巧用性質(zhì),減少運(yùn)算量,在解題中非常重要.跟蹤訓(xùn)練3(1)(2022·安康模擬)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=1,S30=7,則S40等于()A.5B.10C.15D.-20答案C解析易知等比數(shù)列{an}的前n項(xiàng)和Sn滿足S10,S20-S10,S30-S20,S40-S30,…成等比數(shù)列.設(shè){an}的公比為q,則eq\f(S20-S10,S10)=q10>0,故S10,S20-S10,S30-S20,S40-S30,…均大于0.故(S20-S10)2=S10·(S30-S20),即(S20-1)2=1·(7-S20)?Seq\o\al(2,20)-S20-6=0.因?yàn)镾20>0,所以S20=3.又(S30-S20)2=(S20-S10)(S40-S30),所以(7-3)2=(3-1)(S40-7),故S40=15.(2)已知函數(shù)f(x)+f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=2,若等比數(shù)列{an}滿足a1a2023=1,則f(a1)+f(a2)+f(a3)+…+f(a2023)等于()A.eq\f(1,2)B.eq\f(2023,2)C.2D.2023答案D解析根據(jù)題意,等比數(shù)列{an}滿足a1a2023=1,則有a2a2022=a3a2021=…=(a1012)2=1,若a1a2023=1,則eq\f(1,a1)=a2023,則f(a1)+f(a2023)=f(a1)+f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a1)))=2,同理f(a2)+f(a2022)=f(a3)+f(a2021)=…=f(a1011)+f(a1013)=2,f(a1012)+f(a1012)=f(a1012)+f
eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a1012)))=2,則f(a1012)=1,故f(a1)+f(a2)+f(a3)+…+f(a2023)=2×1011+1=2023.課時(shí)精練1.(2022·合肥市第六中學(xué)模擬)若等比數(shù)列{an}滿足a1+a2=1,a4+a5=8,則a7等于()A.eq\f(64,3) B.-eq\f(64,3)C.eq\f(32,3) D.-eq\f(32,3)答案A解析設(shè)等比數(shù)列{an}的公比為q,則eq\f(a4+a5,a1+a2)=q3=8,所以q=2,又a1+a2=a1(1+q)=1,所以a1=eq\f(1,3),所以a7=a1×q6=eq\f(1,3)×26=eq\f(64,3).2.已知等比數(shù)列{an}滿足a1=1,a3·a5=4(a4-1),則a7的值為()A.2B.4C.eq\f(9,2)D.6答案B解析根據(jù)等比數(shù)列的性質(zhì)得a3a5=aeq\o\al(2,4),∴aeq\o\al(2,4)=4(a4-1),即(a4-2)2=0,解得a4=2.又∵a1=1,a1a7=aeq\o\al(2,4)=4,∴a7=4.3.(2022·開(kāi)封模擬)等比數(shù)列{an}的前n項(xiàng)和為Sn=32n-1+r,則r的值為()A.eq\f(1,3)B.-eq\f(1,3)C.eq\f(1,9)D.-eq\f(1,9)答案B解析由等比數(shù)列前n項(xiàng)和的性質(zhì)知,Sn=32n-1+r=eq\f(1,3)×9n+r,∴r=-eq\f(1,3).4.(2022·天津北辰區(qū)模擬)我國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”則該人第四天走的路程為()A.6里 B.12里C.24里 D.48里答案C解析由題意可知,該人所走路程形成等比數(shù)列{an},其中q=eq\f(1,2),因?yàn)镾6=eq\f(a1\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,26))),1-\f(1,2))=378,解得a1=192,所以a4=a1·q3=192×eq\f(1,8)=24.5.設(shè)等比數(shù)列{an}的公比為q,則下列結(jié)論正確的是()A.?dāng)?shù)列{anan+1}是公比為q的等比數(shù)列B.?dāng)?shù)列{an+an+1}是公比為q的等比數(shù)列C.?dāng)?shù)列{an-an+1}是公比為q的等比數(shù)列D.?dāng)?shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是公比為eq\f(1,q)的等比數(shù)列答案D解析對(duì)于A,由eq\f(anan+1,an-1an)=q2(n≥2)知數(shù)列{anan+1}是公比為q2的等比數(shù)列,故A錯(cuò)誤;對(duì)于B,當(dāng)q=-1時(shí),數(shù)列{an+an+1}的項(xiàng)中有0,不是等比數(shù)列,故B錯(cuò)誤;對(duì)于C,當(dāng)q=1時(shí),數(shù)列{an-an+1}的項(xiàng)中有0,不是等比數(shù)列,故C錯(cuò)誤;對(duì)于D,eq\f(\f(1,an+1),\f(1,an))=eq\f(an,an+1)=eq\f(1,q),所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是公比為eq\f(1,q)的等比數(shù)列,故D正確.6.(2022·西北工業(yè)大學(xué)附屬中學(xué)模擬)已知等比數(shù)列{an}的公比q≠1,向量m=(a1,a2),n=(a3,a4),則()A.m⊥nB.m∥nC.(m+n)·(m-n)=0D.|m|=|n|答案B解析對(duì)于A,m·n=a1a3+a2a4=aeq\o\al(2,1)q2+aeq\o\al(2,1)q4=aeq\o\al(2,1)q2(1+q2)>0,A錯(cuò)誤;對(duì)于B,∵a1a4=a2a3,∴a1a4-a2a3=0,∴m∥n,B正確;對(duì)于C,D,由(m+n)·(m-n)=0得m2=n2,即|m|=|n|,又|m|2=aeq\o\al(2,1)+aeq\o\al(2,2)=aeq\o\al(2,1)+aeq\o\al(2,1)q2=aeq\o\al(2,1)(1+q2),|n|2=aeq\o\al(2,3)+aeq\o\al(2,4)=aeq\o\al(2,3)+aeq\o\al(2,3)q2=aeq\o\al(2,3)(1+q2),∴當(dāng)aeq\o\al(2,1)≠aeq\o\al(2,3),即q≠±1時(shí),|m|≠|(zhì)n|,C,D錯(cuò)誤.7.(2022·河南六市聯(lián)考)已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=7,S6=63,則a1=________.答案1解析由于S3=7,S6=63知公比q≠1,又S6=S3+q3S3,得63=7+7q3.∴q3=8,q=2.由S3=eq\f(a11-q3,1-q)=eq\f(a11-8,1-2)=7,得a1=1.8.已知{an}是等比數(shù)列,且a3a5a7a9a11=243,則a7=________;若公比q=eq\f(1,3),則a4=________.答案381解析由{an}是等比數(shù)列,得a3a5a7a9a11=aeq\o\al(5,7)=243,故a7=3,a4=eq\f(a7,q3)=81.9.已知數(shù)列{an}滿足a1=eq\f(3,2),an+1=3an-1(n∈N*).若數(shù)列{bn}滿足bn=an-eq\f(1,2).(1)求證:{bn}是等比數(shù)列;(2)求數(shù)列{an}的前n項(xiàng)和Sn.(1)證明因?yàn)閍n+1=3an-1(n∈N*),所以an+1-eq\f(1,2)=3an-eq\f(3,2)=3eq\b\lc\(\rc\)(\a\vs4\al\co1(an-\f(1,2))),又bn=an-eq\f(1,2),a1=eq\f(3,2),所以bn+1=3bn,即eq\f(bn+1,bn)=3(n∈N*),b1=1,所以{bn}是以1為首項(xiàng),3為公比的等比數(shù)列.(2)解由(1)可得bn=3n-1,即an-eq\f(1,2)=3n-1,所以an=3n-1+eq\f(1,2),所以Sn=30+eq\f(1,2)+31+eq\f(1,2)+…+3n-1+eq\f(1,2)=30+31+…+3n-1+eq\f(1,2)×n=eq\f(1-3n,1-3)+eq\f(n,2)=eq\f(3n+n-1,2).10.(2022·威海模擬)記數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+1.設(shè)bn=an+1-2an.(1)求證:數(shù)列{bn}為等比數(shù)列;(2)設(shè)cn=|bn-100|,Tn為數(shù)列{cn}的前n項(xiàng)和.求T10.(1)證明由Sn+1=4an+1,得Sn=4an-1+1(n≥2,n∈N*),兩式相減得an+1=4an-4an-1(n≥2),所以an+1-2an=2(an-2an-1),所以eq\f(bn,bn-1)=eq\f(an+1-2an,an-2an-1)=eq\f(2an-2an-1,an-2an-1)=2(n≥2),又a1=1,S2=4a1+1,故a2=4,a2-2a1=2=b1≠0,所以數(shù)列{bn}為首項(xiàng)與公比均為2的等比數(shù)列.(2)解由(1)可得bn=2·2n-1=2n,所以cn=|2n-100|=eq\b\lc\{\rc\(\a\vs4\al\co1(100-2n,n≤6,,2n-100,n>6,))所以T10=600-(21+22+…+26)+27+28+29+210-400=200-eq\f(21-26,1-2)+27+28+29+210=200+2+28+29+210=1994.11.已知數(shù)列{an}為正項(xiàng)等比數(shù)列,a2=eq\r(2),a3=2a1,則a1a2+a2a3+…+anan+1等于()A.(2+eq\r(2))[1-(eq\r(2))n]B.(2+eq\r(2))[(eq\r(2))n-1]C.eq\r(2)(2n-1)D.eq\r(2)(1-2n)答案C解析由{an}為正項(xiàng)等比數(shù)列,且a2=eq\r(2),a3=2a1,可得a1=1,公比q=eq\r(2),所以數(shù)列{anan+1}是以eq\r(2)為首項(xiàng),2為公比的等比數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度文化產(chǎn)業(yè)發(fā)展股權(quán)轉(zhuǎn)讓協(xié)議示范文本合同
- 培訓(xùn)學(xué)校推廣宣傳
- 安全教育幼兒園中班
- 巡視巡察業(yè)務(wù)培訓(xùn)
- KYN28A-12外殼技術(shù)規(guī)范
- 產(chǎn)科接種室全員培訓(xùn)綜合試題
- 2025技術(shù)服務(wù)合同合同范本
- 保供煤戰(zhàn)略合作協(xié)議
- 2025機(jī)器設(shè)備買(mǎi)賣(mài)合同協(xié)議模板
- 2025建材租賃版合同
- 冀教版六年級(jí)上冊(cè)英語(yǔ)全冊(cè)單元測(cè)試卷(含期中期末試卷)
- GB/T 4354-2008優(yōu)質(zhì)碳素鋼熱軋盤(pán)條
- GB 29518-2013柴油發(fā)動(dòng)機(jī)氮氧化物還原劑尿素水溶液(AUS 32)
- Skopos and Commission in Translational Action翻譯行為的目的與委托
- 《中國(guó)國(guó)家處方集》附錄
- 消防安全值班制度
- 智慧教育典型案例:依托智慧教學(xué) 優(yōu)化英語(yǔ)課堂
- 偉星管-云上裝飾
- 生活飲用水消毒劑和消毒設(shè)備衛(wèi)生安全評(píng)價(jià)規(guī)范(2019年版)
- 施工現(xiàn)場(chǎng)重大危險(xiǎn)源公示牌
- 養(yǎng)老院老年人誤食誤服防范措施及應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論