版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網 B.球會過球網但不會出界C.球會過球網并會出界 D.無法確定2.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是()A.45° B.85° C.90° D.95°3.已知二次函數(為常數),當自變量的值滿足時,與其對應的函數值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或64.一個多邊形的邊數由原來的3增加到n時(n>3,且n為正整數),它的外角和()A.增加(n﹣2)×180° B.減?。╪﹣2)×180°C.增加(n﹣1)×180° D.沒有改變5.在△ABC中,AB=3,BC=4,AC=2,D,E,F分別為AB,BC,AC中點,連接DF,FE,則四邊形DBEF的周長是(
)A.5 B.7 C.9 D.116.下列運算正確的是()A. B.C. D.7.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.48.化簡的結果為()A.﹣1 B.1 C. D.9.數軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D10.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.二、填空題(本大題共6個小題,每小題3分,共18分)11.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現有60次摸到黑球,請你估計這個袋中紅球約有_____個.12.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.13.不等式組的解集為______.14.已知關于x的方程x2+(1-m)x+m15.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.16.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.三、解答題(共8題,共72分)17.(8分)我校對全校學生進傳統文化禮儀知識測試,為了了解測試結果,隨機抽取部分學生的成績進行分析,現將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統計圖(不完整).請你根據圖中所給的信息解答下列問題:(1)本次隨機抽取的人數是人,并將以上兩幅統計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有人達標;(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?18.(8分)如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數的解析式;若△ABC的面積為6,求直線AB的表達式.19.(8分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經銷商準備把“茶路”融入“絲路”,經計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;(2)若該經銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.20.(8分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.21.(8分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?22.(10分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.23.(12分)在平面直角坐標系中,關于的一次函數的圖象經過點,且平行于直線.(1)求該一次函數表達式;(2)若點Q(x,y)是該一次函數圖象上的點,且點Q在直線的下方,求x的取值范圍.24.“千年古都,大美西安”.某校數學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B”的學生人數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數值,再分別與2.43、0比較大小可得.詳解:根據題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網,當x=18時,∴球會出界.故選C.點睛:考查二次函數的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據題意確定范圍.2、B【解析】
解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.3、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論;當2≤h≤5時,由此時函數的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論.綜上即可得出結論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數的最值以及二次函數的性質,分h<2、2≤h≤5和h>5三種情況求出h值是解題的關鍵.4、D【解析】
根據多邊形的外角和等于360°,與邊數無關即可解答.【詳解】∵多邊形的外角和等于360°,與邊數無關,∴一個多邊形的邊數由3增加到n時,其外角度數的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關鍵.5、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.6、D【解析】
由去括號法則:如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;
B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;
C、(-a)3=≠,故原題計算錯誤;
D、2a2?3a3=6a5,故原題計算正確;
故選:D.【點睛】本題考查了整式的乘法,解題的關鍵是掌握有關計算法則.7、D【解析】
①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.8、B【解析】
先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.9、A【解析】
根據絕對值的含義和求法,判斷出絕對值等于2的數是﹣2和2,據此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關鍵要明確:①互為相反數的兩個數絕對值相等;②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.③有理數的絕對值都是非負數.10、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質;2.等邊三角形的性質;3.含30度角的直角三角形;4.勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據概率公式計算這個口袋中黑球的數量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.12、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質;3.垂直平分線的性質.13、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.14、1.【解析】試題分析:∵關于x的方程x2∴Δ=(1-m)∴m的最大整數值為1.考點:1.一元二次方程根的判別式;2.解一元一次不等式.15、1【解析】
試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.16、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.三、解答題(共8題,共72分)17、(1)120,補圖見解析;(2)96;(3)960人.【解析】
(1)由“不合格”的人數除以占的百分比求出總人數,確定出“優(yōu)秀”的人數,以及一般的百分比,補全統計圖即可;
(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總人數即可得到結果;
(3)求出達標占的百分比,乘以1200即可得到結果.【詳解】(1)根據題意得:24÷20%=120(人),則“優(yōu)秀”人數為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補全統計圖,如圖所示:(2)根據題意得:36+60=96(人),則達標的人數為96人;(3)根據題意得:×1200=960(人),則全校達標的學生有960人.故答案為(1)120;(2)96人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大?。?8、(1)y;(2)yx+1.【解析】
(1)把A的坐標代入反比例函數的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據待定系數法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數的解析式為y;(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數y的圖象經過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數解析式,得,解得:,所以直線AB的解析式為yx+1.【點睛】本題考查了利用待定系數法求反比例函數以及一次函數解析式,熟練掌握待定系數法以及正確表示出BC,AD的長是解題的關鍵.19、(1)100元和150元;(2)購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.【解析】試題分析:(1)設每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元;
(2)設購進A種級別的茶葉akg,購進B種級別的茶葉(200-a)kg.銷售總利潤為w元.構建一次函數,利用一次函數的性質即可解決問題.試題解析:解:(1)設每千克A級別茶葉和B級別茶葉的銷售利潤分別為x元和y元.由題意,解得,答:每千克A級別茶葉和B級別茶葉的銷售利潤分別為100元和150元.(2)設購進A種級別的茶葉akg,購進B種級別的茶葉(200﹣a)kg.銷售總利潤為w元.由題意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w隨x的增大而減小,∴當a取最小值,w有最大值,∵200﹣a≤2a,∴a≥,∴當a=67時,w最小=﹣50×67+30000=26650(元),此時200﹣67=133kg,答:購進A種級別的茶葉67kg,購進B種級別的茶葉133kg.銷售總利潤最大為26650元.點睛:本題考查一次函數的應用、二元一次方程組、不等式等知識,解題的關鍵是理解題意,學會利用參數構建一次函數或方程解決問題.20、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數,相似三角形的判定和性質,圓內接四邊形的性質,等腰三角形的性質等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.21、(1)6;(2);;(3)10或;【解析】
(1)根據圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數關系式時,要考慮到時間x的連續(xù)性才能直接列出函數關系式.22、(1)證明見解析;(2)BC=,AD=.【解析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據此得∠OEB=∠CBE,從而得出OE∥BC,進一步即可得證;(2)證△BDE∽△BEC得,據此可求得BC的長度,再證△AOE∽△ABC得,據此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 村鎮(zhèn)建設規(guī)劃方案
- 村屯道路美化方案
- 材料成型與工藝課程設計
- 桿支座課程設計
- 2022教師資格證資料大全
- 美國垃圾分類
- Excel表格使用教程
- 買車定金協議合同模板
- 職稱崗位年終總結
- 無人機蓄電池維護指導方案
- 2024年廣東省深圳市中考歷史試題
- 化工(危險化學品)企業(yè)主要負責人、安管員安全生產管理專項培訓考核試卷(附參考答案)
- 2024年人教版小學三年級語文(上冊)期中考卷及答案
- 《信息化項目驗收工作規(guī)范》
- 加氣站質量管理手冊樣本
- 2024年全國軟件水平考試之高級網絡規(guī)劃設計師考試重點黑金模擬題(詳細參考解析)
- 經濟學題庫(200道)
- 古樹名木養(yǎng)護復壯技術規(guī)范
- 2024年巴西私人安保服務市場機會及渠道調研報告
- 課《聞王昌齡左遷龍標遙有此寄》跨學科公開課一等獎創(chuàng)新教學設計
- 2024年江蘇省連云港市中考英語真題(含解析)
評論
0/150
提交評論