2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(Ⅲ)(含答案及解析)_第1頁
2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(Ⅲ)(含答案及解析)_第2頁
2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(Ⅲ)(含答案及解析)_第3頁
2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(Ⅲ)(含答案及解析)_第4頁
2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(Ⅲ)(含答案及解析)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年山東省聊城市中考數(shù)學(xué)歷年真題匯總卷(III)

考試時(shí)間:90分鐘;命題人:數(shù)學(xué)教研組

考生注意:

1、本卷分第I卷(選擇題)和第n卷(非選擇題)兩部分,滿分io。分,考試時(shí)間90分鐘

oO2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上

3,答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新

的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。

號(hào)

學(xué)第I卷(選擇題30分)

封封

一、單選題(10小題,每小題3分,共計(jì)30分)

1,一元二次方程x2-4=0的根為()

A.x=—2B.x=2C.x=±2D.x=±^2

級(jí)

oO2、如圖所示,一座拋物線形的拱橋在正常水位時(shí),水面AB寬為20米,拱橋的最高點(diǎn)0到水面AB的

距離為4米.如果此時(shí)水位上升3米就達(dá)到警戒水位CD,那么CD寬為()

密名密

A.4百米B.10米C.4芯米D.12米

3、有一個(gè)邊長(zhǎng)為1的正方形,以它的一條邊為斜邊,向外作一個(gè)直角三角形,再分別以直角三角形

的兩條直角邊為邊,向外各作一個(gè)正方形,稱為第一次“生長(zhǎng)”(如圖1);再分別以這兩個(gè)正方形

oO

的邊為斜邊,向外各自作一個(gè)直角三角形,然后分別以這兩個(gè)直角三角形的直角邊為邊,向外各作一

個(gè)正方形,稱為第二次“生長(zhǎng)”(如圖2)……如果繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”,請(qǐng)

你算出“生長(zhǎng)”了2021次后形成的圖形中所有的正方形的面積和是()

圖1圖2

A.1B.2020C.2021D.2022

4、如圖,AD為。。的直徑,A£)=8,ZDAC^ZABC,則AC的長(zhǎng)度為()

D.瑋

5、用符號(hào)/G)表示關(guān)于自然數(shù)x的代數(shù)式,我們規(guī)定:當(dāng)x為偶數(shù)時(shí),/G)=^;當(dāng)x為奇數(shù)時(shí),

F(x)=3x+1.例如:/(x)=3xl+l=4,/(8)=-|=4.設(shè)x「8,%=?。?,、3=?。?,

x=f(x).以此規(guī)律,得到一列數(shù)%,則這2022個(gè)數(shù)之和

nn-l

X+X+X+---+X+無等于()

12320212022

A.3631B.4719C.4723D.4725

6、如圖,點(diǎn)F在BC上,BC=EF,AB=AE,NB=NE,則下列角中,和2NC度數(shù)相等的角是()

BFC

A.ZAFBB.ZEAFC.ZEACD.NEFC

線線

7、如圖是一個(gè)正方體的展開圖,現(xiàn)將此展開圖折疊成正方體,有”字一面的相對(duì)面上的字是

()

O

A.冬B.奧C.運(yùn)D.會(huì)

號(hào)8、下面的圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是(

學(xué)

封封

A.D.

9、下列現(xiàn)象:

級(jí)

①用兩個(gè)釘子就可以把木條固定在墻上

O年O

②從A地到B地架設(shè)電線,總是盡可能沿著線段AB架設(shè)

③植樹時(shí),只要確定兩棵樹的位置,就能確定同一行樹所在的直線

④把彎曲的公路改直,就能縮短路程

密名密

其中能用“兩點(diǎn)之間線段最短”來解釋的現(xiàn)象有()

A.①④B.①③C.②④D.③④

10、若3a2+帥和(〃-1)“多是同類項(xiàng),且它們的和為0,則mn的值是()

OOA.-4B.12C.2D.4

第II卷(非選擇題70分)

二、填空題(5小題,每小題4分,共計(jì)20分)

外內(nèi)

1、若x-2y=3,則2(*-2))-》+2k5的值是______.

2、已知點(diǎn)P是線段AB的黃金分割點(diǎn),AP>PB.若AB=2,貝ijAP=____.

3、如圖,已知AABC和AAOE都是等腰三角形,NB4C=/D4E=90,,BE、CO交于點(diǎn)O,連接

OA.下列結(jié)論:①BE=C£>;?BE-LCD;③OA平分/CAE;④ZAO8=45.其中正確結(jié)論的是

4、如圖,“8C和"DE均為等邊三角形,D,E分別在邊A8,AC上,連接BE,CD,若

ZACD=\5°,則/CBE=.

5、當(dāng)我們利用兩種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如:由圖1可得等

式:(a+2b)(a+b)=a^+3ab+2b2.

(1)由圖2可得等式:;

(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知!S-c)2=(a-b)(c-a)且〃*(),則比=

4a

h

abc

,圖I圖2

o°三、解答題(5小題,每小題10分,共計(jì)50分)

,1,解方程:

.⑴8-4(x-3)=6x;

.號(hào)

.學(xué)

封封⑸2X+3

.(2)-—一x"-r2=1-

2、如圖,在直角坐標(biāo)系內(nèi),把丫=工*的圖象向下平移1個(gè)單位得到直線AB,直線AB分別交x軸于

2

點(diǎn)A,交y軸于點(diǎn)B,C為線段AB的中點(diǎn),過點(diǎn)C作AB的垂線,交y軸于點(diǎn)D.

.級(jí)

O年

密名

.姓

⑵求BD的長(zhǎng);

(3)直接寫出所有滿足條件的點(diǎn)E;點(diǎn)E在坐標(biāo)軸上且AABE為等腰三角形.

3、我們定義:在等腰三角形中,腰與底的比值叫做等腰三角形的正度.如圖1,在aABC中,AB=

AC,差■的值為aABC的正度.

DL

已知:在aABC中,AB=AC,若D是aABC邊上的動(dòng)點(diǎn)(D與A,B,C不重合).

(1)若NA=90°,則AABC的正度為:

(2)在圖1,當(dāng)點(diǎn)D在腰AB上(D與A、B不重合)時(shí),請(qǐng)用尺規(guī)作出等腰4ACD,保留作圖痕跡;

若4ACD的正度是正,求NA的度數(shù).

2

(3)若NA是鈍角,如圖2,AABC的正度為q,ZXABC的周長(zhǎng)為22,是否存在點(diǎn)D,使4ACD具有正

度?若存在,求出4ACD的正度;若不存在,說明理由.

4、計(jì)算:|■有+"一6乂《一|有.

5、如圖1,在平而直角坐標(biāo)系中,拋物線),=辦2+法+。(。、b、。為常數(shù),。。0)的圖像與x軸交

于點(diǎn)41,0)、B兩點(diǎn),與y軸交于點(diǎn)C(0,4),且拋物線的對(duì)稱軸為直線x=-±.

2

(1)求拋物線的解析式;

(2)在直線BC上方的拋物線上有一動(dòng)點(diǎn)M,過點(diǎn)M作/N,x軸,垂足為點(diǎn)N,交直線BC于點(diǎn)。;

是否存在點(diǎn)M,使得MO+DC取得最大值,若存在請(qǐng)求出它的最大值及點(diǎn)M的坐標(biāo);若不存

2

線線

在,請(qǐng)說明理由;

(3)如圖2,若點(diǎn)p是拋物線上另一動(dòng)點(diǎn),且滿足NPBC+/4CO=45。,請(qǐng)直接寫出點(diǎn)p的坐標(biāo).

-參考答案-

OO

一、單選題

1、C

.號(hào).

.學(xué).【分析】

封封

先移項(xiàng),把方程化為x2=4,再利用直接開平方的方法解方程即可.

【詳解】

解:*2-4=0,

.級(jí).

O年O:.X2=4,

/.x=±2,即x=2,x=-2,

12

故選C

密名密

【點(diǎn)睛】

.姓.

本題考查的是一元二次方程的解法,掌握“利用直接開平方的方法解一元二次方程”是解本題的關(guān)

鍵.

2,B

OO

【分析】

以0點(diǎn)為坐標(biāo)原點(diǎn),AB的垂直平分線為y軸,過0點(diǎn)作y軸的垂線,建立直角坐標(biāo)系,設(shè)拋物線的

解析式為丫=2*2,由此可得A(-10,-4),B(10,-4),即可求函數(shù)解析式為y=-x2,再

將y=-1代入解析式,求出C、D點(diǎn)的橫坐標(biāo)即可求CD的長(zhǎng).

外內(nèi)

【詳解】

解:以o點(diǎn)為坐標(biāo)原點(diǎn),AB的垂直平分線為y軸,過。點(diǎn)作y軸的垂線,建立直角坐標(biāo)系,

設(shè)拋物線的解析式為y=a*,

???0點(diǎn)到水面AB的距離為4米,

...A、B點(diǎn)的縱坐標(biāo)為-4,

?水面AB寬為20米,

AA(-10,-4),B(10,-4),

將A代入y=ax2,

-4=100a,

???水位上升3米就達(dá)到警戒水位CD,

.??C點(diǎn)的縱坐標(biāo)為-1,

-1=-——X2,

25

;.x=±5,

/.CD=10,

故選:B.

【點(diǎn)睛】

本題考查二次函數(shù)在實(shí)際問題中的應(yīng)用,找對(duì)位置建立坐標(biāo)系再求解二次函數(shù)是關(guān)鍵.

3、D

【分析】

根據(jù)題意可得每“生長(zhǎng)”一次,面積和增加1,據(jù)此即可求得“生長(zhǎng)”了2021次后形成的圖形中所

線線有的正方形的面積和.

【詳解】

解:如圖,

o

號(hào)

學(xué)

封封

由題意得:

SA=l,

由勾股定理得:

sB+s=Ci,

級(jí)

則“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和為2,

o年O

同理可得:

“生長(zhǎng)”了2次后形成的圖形中所有的正方形面積和為3,

“生長(zhǎng)”了3次后形成的圖形中所有正方形的面積和為4,

密名密

“生長(zhǎng)”了2021次后形成的圖形中所有的正方形的面積和是2022,

故選:D

oO【點(diǎn)睛】

本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.

4、A

【分析】

連接CD,由等弧所對(duì)的圓周角相等逆推可知AODC,ZACD=90°,再由勾股定理即可求出

AC=46

【詳解】

解:連接CD

,:ADAC=ZABC

.\AC=DC

又???AD為。。的直徑

ZACD=90°

...AC2+DC2=AD2

2AC2=AD2

故答案為:A.

【點(diǎn)睛】

本題考查了圓周角的性質(zhì)以及勾股定理,當(dāng)圓中出現(xiàn)同弧或等弧時(shí),常常利用弧所對(duì)的圓周角或圓心

角,通過相等的弧把角聯(lián)系起來,直徑所對(duì)的圓周角是90°.

5、D

【分析】

根據(jù)題意分別求出x=4,x=2,x=l,x=4,…,由此可得從x開始,每三個(gè)數(shù)循環(huán)一次,進(jìn)而繼續(xù)

23452

求解即可.

【詳解】

線線

解::x=8,

1

??.x=f(8)=4,

2

x=f(4)=2,

3

x=f(2)=1,

OO4

x=f(1)=4,

5

***,

.號(hào).

從X開始,每三個(gè)數(shù)循環(huán)一次,

.學(xué).2

封封

???(2022-1)4-3=673-2,

'/x+x+x=7,

234

/.x+x+x+,?-+x+x=8+673X7+4+2=4725.

.級(jí).I2320212022

O年O

故選:D.

【點(diǎn)睛】

本題考查數(shù)字的變化規(guī)律,能夠通過所給的數(shù),通過計(jì)算找到數(shù)的循環(huán)規(guī)律是解題的關(guān)鍵.

密名密6、D

.姓.

【分析】

根據(jù)SAS證明4AEF四△ABC,由全等三角形的性質(zhì)和等腰三角形的性質(zhì)即可求解.

【詳解】

OO

解:在4AEF和4ABC中,

AB=AE

,/B=/E,

BC=EF

外內(nèi)

AAEF^AABC(SAS),

AF=AC,NAFE=/C,

.*.ZC=ZAFC,

ZEFC=ZAFE+ZAFC=2ZC.

故選:D.

【點(diǎn)睛】

本題主要考查了全等三角形的判定與性質(zhì),等腰三角形的判定和性質(zhì),熟練掌握全等三角形的判定與

性質(zhì)是解決問題的關(guān)鍵.

7、D

【分析】

正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)作答.

【詳解】

解:正方體的表面展開圖,相對(duì)的面之間一定相隔一個(gè)正方形,

“京”與“奧”是相對(duì)面,

“冬”與“運(yùn)”是相對(duì)面,

“北”與“會(huì)”是相對(duì)面.

故選:D.

【點(diǎn)睛】

本題主要考查了正方體相對(duì)兩個(gè)面上的文字,注意正方體的空間圖形,從相對(duì)面入手,分析及解答問

題.

8、D

【分析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.

【詳解】

線線

解:A、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;

B、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;

C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;

I)、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)符合題意;

OO

故選:D.

【點(diǎn)睛】

.號(hào).

.學(xué).此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折

封封疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.

9、C

【分析】

.級(jí).直接利用直線的性質(zhì)和線段的性質(zhì)分別判斷得出答案.

O年O

【詳解】

解:①用兩個(gè)釘子就可以把木條固定在墻上,利用的是兩點(diǎn)確定一條直線,故此選項(xiàng)不合題意;

②從A地到B地架設(shè)電線,總是盡可能沿著線段AB架設(shè),能用“兩點(diǎn)之間,線段最短”來解釋,故

此選項(xiàng)符合題意;

密名密

.姓.

③植樹時(shí),只要確定兩棵樹的位置,就能確定同一行樹所在的直線,利用的是兩點(diǎn)確定一條直線,故

此選項(xiàng)不合題意;

④把彎曲的公路改直,就能縮短路程,能用“兩點(diǎn)之間,線段最短”來解釋,故此選項(xiàng)符合題意.

故選:C.

OO

【點(diǎn)睛】

本題考查了直線的性質(zhì)和線段的性質(zhì),正確掌握相關(guān)性質(zhì)是解題關(guān)鍵.

10、B

外內(nèi)

【分析】

根據(jù)同類項(xiàng)的定義得到2+m=3,n-l=-3,求出m、n的值代入計(jì)算即可.

【詳解】

解:?.?3G+"必和(〃-Da%是同類項(xiàng),且它們的和為0,

/.2+m=3,n-l=-3,

解得m=l,n=-2,

/.mn=-2,

故選:B.

【點(diǎn)睛】

此題考查了同類項(xiàng)的定義:含有相同的字母,且相同字母的指數(shù)分別相等,熟記定義是解題的關(guān)鍵.

二、填空題

1、-2

【分析】

將x-2),的值代入原式=2(x-2),)一(x-2y)-5計(jì)算可得.

【詳解】

解:2(x-2y)-x+2y-5=2(x-2y)-(x-2y)-5

將x-2y=3代入,原式=2x3-3-5=-2

故答案為:-2

【點(diǎn)睛】

本題主要考查代數(shù)式求值,解題的關(guān)鍵是熟練掌握整體代入思想的運(yùn)用.

2、若-1##

【分析】

線線根據(jù)黃金分割點(diǎn)的定義,知AP是較長(zhǎng)線段;則AP=6zlAB,代入數(shù)據(jù)即可得出AP的長(zhǎng).

2

【詳解】

解:由于P為線段AB=2的黃金分割點(diǎn),且AP是較長(zhǎng)線段;

OO則AP=2x611=行一1,

2

故答案為:^5-1.

.號(hào).

.學(xué).【點(diǎn)睛】

封封

本題考查了黃金分割點(diǎn)即線段上一點(diǎn)把線段分成較長(zhǎng)和較短的兩條線段,且較長(zhǎng)線段的平方等于較短

線段與全線段的積,熟練掌握黃金分割點(diǎn)的公式是解題的關(guān)鍵.

3、①②④

.級(jí).

【分析】

O年O

證明△DACg/^EAB,再利用全等三角形的性質(zhì)即可判斷①;②由全等三角形的性質(zhì)可得

ZADOZAEB,再由/ADE+NAED=NAED+NEDONAD(M80°-NEAD=90°,證得NE0D=90°,即可判

斷②;過點(diǎn)A分別作AMLCD與M,AN_LBE于N,根據(jù)全等三角形面積相等和B氏CE,證得AM=AN,即

A0平分NB0D即可判斷④;根據(jù)現(xiàn)有條件無法證明0A平分NCAE即可判斷③.

密名密【詳解】

.姓.

解:?.?△ABC和4ADE都是等腰三角形,ZBAC=ZDAE=90°,

AD=AE,AC=AB,NDAC=/DAE+/EAC=/BAC+/EAC=/EAB,

.,.△DAC^AEAB(SAS),

OO

CD=BE,ZADC=ZAEB,故①正確:

VZADE+ZAED=ZAED+ZED(HZADO180°-ZEAD=90O,

ZAED+ZEDOZAEB=90°,

外內(nèi).?.ZOED+ZODE=9O°,

ZE0D=90°,

ABEICD,故②正確:

如圖,過點(diǎn)A分別作AMJ_CD與M,ANJ_BE于N,

VADAC^AEAB,

:.S*=-CDAM=S=-BEAN,

ADC2△班32

.,.AM=AN,

.?.OA平分/BOD,

VBE1CD,

.\ZB0D=90°,

ZA0D=ZA0B=45°,故④正確;

根據(jù)現(xiàn)有條件無法證明OA平分NCAE,故③錯(cuò)誤,

...正確結(jié)論為①②④.

故答案為:①②④

【點(diǎn)睛】

本題考查了全等三角形的判定與性質(zhì)、角平分線的判定與定義,以及三角形內(nèi)角和定理,熟練掌握全

等三角形的性質(zhì)與判定是解答本題的關(guān)鍵.

4、45。度

【分析】

線線

根據(jù)題意利用全等三角形的判定與性質(zhì)得出.BDE(SAS)和ZEBD=ZACD=15。,進(jìn)而依據(jù)

ZA8C-NEB。進(jìn)行計(jì)算即可.

【詳解】

解:「△ABC和均為等邊三角形,

OO

;.AB=AC,AE=AD,EC=DB,

:.ZAED=ZADE=ZABC=60,ZDEC=NEDB=120。,

.號(hào).

.學(xué).在ACED和ABDE中,

封封

'EC=DB

"NDEC=NEDB,

ED=ED

:.^CED=^BDE(SAS),

.級(jí).

O年O

NEBD=NACD=15。,

NCBE=AABC-ZEBD=60。-15。=45。.

故答案為:45°.

【點(diǎn)睛】

密名密

.姓.

本題考查全等三角形的判定與性質(zhì)以及等邊三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題

的關(guān)鍵.

5、(a+〃+c)2=。2+抗+c2+2"+2bc+2〃c2

OO

【分析】

(1)方法一:直接利用正方形的面積公式可求出圖形的面積;方法二:利用圖形的面積等于9部分

的面積之和,根據(jù)方法一和方法二的結(jié)果相等建立等式即可得;

(2)先將己知等式利用完全平方公式、整式的乘法法貝I變形為公+4加+:。2-〃-"+:慶=0,再

外內(nèi)442

利用(1)的結(jié)論可得(〃-1〃-」c)2=0,從而可得2a=b+c,由此即可得出答案.

22

【詳解】

解:⑴方法一:圖形的面積為加+"渝

方法二:圖形的面積為〃2+加+c2+2ab+2bc+2〃c,

則由圖2可得等式為(〃+b+c)2=〃2+6+。24-2ab+2bc+2ac,

故答案為:(a+b+c)2=〃2+加+<?2+lab+2hc+2ac;

(2)-(b-c)2=(a-bXc-a),

4

—1b2,——1Z,?c1+—C2=ac-a2-bLe+ab,

424

1,1,17八

。2+—。2+-c2-ac-ab+-bc=0,

442

利用(1)的結(jié)論得:(a--b--c)2=a2+—b2+—c2-ac-ab+—bc,

22442

(a--b--c)2=0,

22

/.6T--/?--c=0,即2〃=b+c,

22

??,QH0,

.b+c

..---------乙,

故答案為:2.

【點(diǎn)睛】

本題考查了完全平方公式與圖形面積、整式乘法的應(yīng)用,熟練掌握完全平方公式和整式的運(yùn)算法則是

解題關(guān)鍵.

三、解答題

1、(l)x=2;

線線

(2)x=-1

【解析】

【分析】

(1)根據(jù)一元一次方程的解法解答即可;

OO

(2)根據(jù)一元一次方程的解法解答即可.

(1)

.號(hào).

.學(xué).解:去括號(hào),得:8—4x+12=6x,

封封

移項(xiàng)、合并同類項(xiàng),得:-10x=-20,

化系數(shù)為1,得:x=2;

(2)

.級(jí).

O年O解:去分母,得:3(2x+3)—(x—2)=6,

去括號(hào),得:6x+9—x+2=6,

移項(xiàng)、合并同類項(xiàng),得:5x=-5,

化系數(shù)為1,得:x=-l;

密名密

.姓.【點(diǎn)睛】

本題考查解一元一次方程,熟練掌握一元一次方程的解法步驟是解答的關(guān)鍵.

2、(1)A(2,0),S(0,-l)

OO⑵=*

2

(3)(2+點(diǎn)0),(2-Wo),(-2,0),(1,0),(0,1),(0,-1+Ts),(0,-1-有),(0,,

【解析】

外內(nèi)

【分析】

(1)先根據(jù)一次函數(shù)圖象的平移可得直線A8的函數(shù)解析式,再分別求出),=0時(shí)x的值、x=0時(shí)丫的

值即可得;

(2)設(shè)點(diǎn)。的坐標(biāo)為(0,),從而可得=舊「,=/(+1)2,再根據(jù)線段垂直平分

線的判定與性質(zhì)可得=,建立方程求出。的值,由此即可得;

(3)分①點(diǎn)E在x軸上,②點(diǎn)£在^軸上兩種情況,分別根據(jù)=,=,=

建立方程,解方程即可得.

(1)

解:由題意得:直線AB的函數(shù)解析式為-1,

2

當(dāng)y=O時(shí);1-1=0,解得=2,即A(2,0),

2

當(dāng)X=O時(shí),=-1,即8(0,-1);

(2)

解:設(shè)點(diǎn)。的坐標(biāo)為(0,),

=J4+2,=+1)2,

;點(diǎn)C為線段4B的中點(diǎn),CDLAB,

???垂直平分48,

=,即77^~2=7(~+1)2,

解得=打

2

則=Jg4-1)2=§;

(3)

解:由題意,分以下兩種情況:

①當(dāng)點(diǎn)E在x軸上時(shí),設(shè)點(diǎn)E的坐標(biāo)為(,0),

線線

則=J(2—0)2+(0+1)2=.,

=J(2一)2,

=J(0-)2+(—1—0)2=J2+1,

OO

(I)當(dāng)=時(shí),△為等腰三角形,

則J(2—)2=4,解得=2+心或=2—心,

.號(hào).

.學(xué).

此時(shí)點(diǎn)E的坐標(biāo)為(2+J5,0)或(2-0,0);

封封

(II)當(dāng)=時(shí),△為等腰三角形,

則廠==心,解得=2或=一2,

.級(jí).

此時(shí)點(diǎn)E的坐標(biāo)為(-2,0)或(2,0)(與點(diǎn)A重合,舍去);

O年O

(III)當(dāng)=時(shí),△為等腰三角形,

則j(2_)=LTT,解得=力

密名密此時(shí)點(diǎn)E的坐標(biāo)為(;0);

.姓.

②當(dāng)點(diǎn)E在丫軸上時(shí),設(shè)點(diǎn)E的坐標(biāo)為(0,),

則=J(2—0)2+(0+1)2=小,

OO=J(2—0)2+(0—+2>

=瓜~+1)2,

(I)當(dāng)=時(shí),△為等腰三角形,

外內(nèi)

則。5=a解得=1或=一1,

此時(shí)點(diǎn)E的坐標(biāo)為(0,1)或(0,-1)(與點(diǎn)B重合,舍去);

(H)當(dāng)=時(shí),△為等腰三角形,

則〃+1)2=彼,解得=一1+陋或=—1—

此時(shí)點(diǎn)E的坐標(biāo)為(0,-1+盧)或(0,-1-7^);

(III)當(dāng)=時(shí),△為等腰三角形,

則_2=7(~+1)2,解得=點(diǎn)

此時(shí)點(diǎn)E的坐標(biāo)為(0,?;

綜上,所有滿足條件的點(diǎn)E的坐標(biāo)為(2+有,0),(2-芯,0),(-2,0),(1,0),(0,1),(0,-1+^).

(0,-1-5/5),(0,:).

【點(diǎn)睛】

本題考查了一次函數(shù)圖象的平移、線段垂直平分線的判定與性質(zhì)、等腰三角形、兩點(diǎn)之間的距離公式

等知識(shí)點(diǎn),較難的是題(3),正確分情況討論是解題關(guān)鍵.

3、(1)號(hào)(2)圖見解析,ZA=45°(3)存在,正度為6或|.

【解析】

【分析】

(1)當(dāng)/A=90°,Z\ABC是等腰直角三角形,故可求解;

(2)根據(jù)aACD的正度是正,可得4ACD是以AC為底的等腰直角三角形,故可作圖;

2

(3)由AABC的正度為:周長(zhǎng)為22,求出AABC的三條邊的長(zhǎng),然后分兩種情況作圖討論即可求

解.

【詳解】

線線

(1)VZA=90°,則4ABC是等腰直角三角形

.\AB=AC

*/AB2+AC2=BC2

OO

.?.△ABC的正度為:一=返

V22

故答案為:也;

.號(hào).

2

.學(xué).

封封(2)???△ACD的正度是正,由(1)可得4ACD是以AC為底的等腰直角三角形

2

故作CDLAB于D點(diǎn),如圖,Z\ACD即為所求;

.級(jí).

O年O

???Z\ACD是以AC為底的等腰直角三角形

密名密.*.ZA=45O;

.姓.

(3)存在

???△ABC的正度為|,

.AB_3

??----,

OOBC5

設(shè):AB=3x,BC=5x,則AC=3x,

「△ABC的周長(zhǎng)為22,

/,AB-1-BC+AC=22,

外內(nèi)

即:3x+5x+3x=22,

.,.x=2,

.".AB=3x=6,BC=5X=10,AC=3X=6,

分兩種情況:

①當(dāng)AC=CD=6時(shí),如圖

過點(diǎn)A作AE_LBC于點(diǎn)E,

VAB=AC,

.?.BE=CE=LBC=5,

2

VCD=6,

DE=CDCE=1,

在Rt/XACE中,

由勾股定理得:AE=J^F=JTT,

在Rt/MED中,

由勾股定理得:AD=q~2=2^/5

/?AACD的正度=一=4==A

②當(dāng)AD=CD時(shí),如圖

o

號(hào)

學(xué)

級(jí)

o年

密名

o

【點(diǎn)睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論