外文翻譯-溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀_第1頁(yè)
外文翻譯-溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀_第2頁(yè)
外文翻譯-溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀_第3頁(yè)
外文翻譯-溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀_第4頁(yè)
外文翻譯-溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Thermoelectricpowergeneration,alsocalledthermoelectricpowergeneration,isakindofgreenenvironmentalprotection.Thethermoelectricpowergenerationtechnologyhastheadvantagesofsimplestructure,stronganddurable,nomovingparts,nonoise,longservicelife,etc..Canmakereasonableuseofsolarenergy,geothermalenergy,industrialwasteheatandlowgradeenergyintoelectricity.Theresearchofthermoelectricpowergenerationtechnologybeganin1940s.Becauseofitssignificantadvantages,thermoelectricpowergenerationinaviation,militaryandotherfieldshasbeenwidelyused,theUnitedStates,formerSovietUnionhasdevelopedathousandsofradioisotopeornuclearreactortemperaturedifferencegeneratorusedasemptyasked,marineequipmentofpowersupply.Withtheincreasingdepletionoffossilenergy,theUnitedStates,Japan,theEuropeanUnionandotherdevelopedcountriespaymoreattentiontotheresearchofthermoelectricpowergenerationtechnologyinthecivilfield,andhasmadeconsiderableprogress.Researchindomesticthermalpowergeneration,mainlyinelectricaltheoryandthermoelectricmaterialsbyresearch,aimedattemperaturehairappliancesoptimizationandprovidetheoreticalguidanceforthepreparationofthermoelectricmaterialswithexcellentproperties,althoughChinaistheworldlargestsemiconductorthermoelectricdeviceoutputcountry,butinthetemperaturedifferencehairappliancesintegrateddesignandapplicationresearchisstillverylack.Therefore,thestudyofthermoelectricpowergenerationhasaveryrealisticsignificance.Isintroducedinthispaperprincipleofthermoelectrictechnology,reviewstheresearchprogressandstatusquoofdomesticandforeign,tocommoncommercialthermoelectricmoduleasanexample,thepowergenerationefficiencyofthermoelectricpowergenerationinthepresenceoflow,thermoelectricitycomponentandshortservicelife,reliabilityareanalyzed,andcountermeasuresareputforward.Withtheimprovementoftheperformanceofthermoelectricmaterialsandtheincreaseofthereliabilityofthermoelectriccomponents,theapplicationofthermoelectricpowergenerationhasabroadprospect.1workingprincipleCompletethetemperaturedifference,sothathightemperaturethermoelectricpowerisbasedonthermoelectricmaterialSeebeckeffectdevelopedapowergenerationtechnology,thePtypeandNtypetwokindofdifferenttypesofthermoelectricmaterials(Ptypeholerichmaterials,Ntypeiselectronrichmaterial)isconnectedtotheformationofaPNjunction,isplacedinahightemperaturestate,andtheotherendisformedatlowtemperature,duetothethermalexcitation,pifthereexistsalocallyconnected)typematerialendhole(electron)concentrationishigherthanthatofthelowtemperatureend,sointhisconcentrationgradientdrivenBu,holesandelectronstothelowtemperaturesidediffusion,resultingintheformationofelectricpotentialthermoelectricmaterialsthroughthelowtemperatureendofthehightemperatureendoftheinputofheatenergydirectlyintoelectricalenergy.APNjunctionalone,electromotiveforcecanbeformedisverysmall,andifsomanyseriesofPNjunctionCome,cangetenoughhighvoltage,becomeathermoelectricpowerplant2domesticandinternationalthermoelectricpowergenerationtechnologyresearchprogress2.1researchprogressinforeigncountriesSincethediscoveryoftheSeebeckeffectsince1821Seebeck,foreignthethermoelectricgenerationofalargenumberofstudies,in1947,firstthethermoelectricgeneratoravailable,efficiencyisonly1.5%.In1953,Loffeacademicianresearchteamsuccessfullydevelopedtheuseofcoaloillamps,tractorheatasaheatsourceofthermoelectricpowerplant,intheuseofelectricitydifficultareasforsmallpowersupply.Inthesixtiesofthe20thcentury,somematerialswithgoodthermoelectricproperties,theresearchupsurgeofthermoelectricpowergenerationreachedapeak,especiallytheformerSovietUnionandtheUnitedStates,duetothepromotionofnationaldefense,militaryandotherspecialindustry,applicationanddevelopmentofthermoelectricgenerationtechnologyrapidly.Bytheendof1960s,theformerSovietUnionhasmademorethan1000radioactiveisotopethermoelectricgenerator(RTG),whichiswidelyusedinsatellitepowersupply,beaconandnavigationmark,anditsaverageservicelifeismorethan10years.TheUnitedStatesisalsounwillingtolagbehind,anditsdevelopmentofthelongestRTGworkQuestionhasbeenover30years.June1961U.S.SNAP-3Aenergysystemsputintouse,theoutputpowerof2.7W,powergenerationefficiencyof5.1%.TheRTG}outputpower,whichwasusedonthelaunchofJupiterandSaturnin1977,hasreached155W.Inearly1980s,theUnitedStatescompletedthedevelopmentofthe500-1000Wmilitarythermoelectricgenerator,andinthelate80'stoenterthearmyequipment.Withtheenergycrisisandenvironmentalpollution,peoplebegantopayattentiontothevalueofthermoelectricpowergenerationinwasteheatutilization,manycountrieshavedevelopedthermoelectrictechnologyasamediumandlong-termenergydevelopmentplan.Japanlaunchedaseriesofto"solidwastecombustionenergyrecoveryresearchprogram"inthetitleofthegovernmentplanisstudiedforthesolidwasteincinerationfurnacewasteheatpowergenerationtechnology,combiningtheturbinesandthermoelectricgenerator,toachievemaximumutilizationoftheheatofthedifferentscalegarbageincineration.2003NovemberU.S.DepartmentofEnergyannouncedfundedPacificNorthwestNationalLaboratory,MichiganTechnologyUniversityandotherunits,focusingontheirresearchinhighperformancethermoelectricmaterialsandapplicationtechnology,especiallytheuseofindustrialwasteheat.Inrecentyears,theutilizationofthelowgradeheatsourcehasbecomethemaindirectionoftheresearchonthetechnologyofthermalpowergeneration.Maneewan,suchastheuseofsteelplateplacedontheroofofthesolarcollectortoabsorbtheheatandtheenvironmentofthetemperaturedifferencebetweenpowergeneration,todrivetheaxialflowwind})Ltoguidethenaturalconvectionoftheroofair,soastocooltheroof.Ridaandsoon,thethermalsideofthethermoelectricgeneratorisconnectedwiththeouterwallofthecookingstoveinthecountry,andthecoldendisarrangedintheair,andthetemperatureofthefurnacewallandtheenvironmentareusedtogenerateelectricity,andtheoutputpoweris4.2W.HASEBEetal.Thesummerhightemperaturesurfaceastheheatsource,heatexchangetubeforthecollector.By19groupsofthermoelectriccomponents.Intheheatpipeliquidflowrateis0.7L/min,outputpowerof3.6wthacher,fundedbytheU.S.DepartmentofenergyandNewYorkStateEnergyResearchanddevelopmentauthorityinthedevelopmentofvehicleexhaustwasteheatpowergenerationsystem,theuseofthegroupof20hz-20thermoelectricmodule,thermoelectricmaterialsforBitebasedmaterials,vehiclespeedof112km/h,maximumtemperaturedifference174DEGC,maximumoutputpowerof255W,2006,bsstscientistsandBMWjointlyannounced,commercialvehicletemperaturedifferencegeneratorwillbeputintooperationin2013.Douglasandsoonthedynamicchangeoftheheatsource,thedesignofmultimoduleInteractionLoopthermoelectricgenerator,underthesameheatsource,themaximumoutputpowerincreasedby25%.2.2domesticresearchprogressDomesticresearchonthermoelectricpowergenerationisrelativelylate,anditismainlyfocusedontheresearchofthetheoryandthepreparationofthermoelectricmaterials.ChenJincanresearchgroupfrom1980sbegantostudythebasictheoryofthermoelectricgenerator,thethermoelectricpropertiesoftheoptimizationandanalysis,getalotofmeaningfulresults[no.QuJianetal.LiYudongetal.Analysisoftheperformanceofthelowtemperaturedifferencegeneratorfromthepointofviewofexergy.JiaLeietal.TheinfluenceofThompsonGeontheoutputpowerofthelowtemperatureandlargetemperaturedifferenceconditionscannotbeignored.JiaYangEtc.atemperaturethermoelectriccouplinganalysismodel,tothenumericalcalculationmethodanalysisthethermoelectricmaterialparametersandtheirvariationonelectricalcharacteristicsof,drawtheconclusion,materialthermalconductivity,electricalresistivityandSeebeckcoefficientonthegeneratorefficiencyofconversionarenonlinear,whichinfluencecoefficientofthermalconductivityofthemostobvious.DePeng,andanalysisthethermoelectricthermalenvironment,looploadresistanceparametersandthermoelectricmonomersofconnectionwaysofoperatingperformanceoftheelectricappliance,itisconcludedthattoimprovethermoelectricgeneratoratthehotendheatfluxorincreasedcoldendoftheheattransfercoefficientcanincreasetheelectricaloutputpowerandtheefficiencyofthermoelectricconversionofconclusion.SuJingfangstudiedthesystem.Andtheenvironment,systemandsystemoffluxrelation,propertiesofthesystemtomakeoptimizationbasedthermoelectricgeneratoroptimizationdesignmodel,andusingVB6.0(MicrosoftVisualBasic6.0)languageasadevelopmenttool,ActiveXDataObjectAccessdatabase,thepreparationofthethermoelectricgeneratordesignsoftware.QianWeiqiangthroughstudyontheelectricalpropertiesoflowgradeheatsourceofsmallsemiconductortemperaturedifference,summarizestheelectromotiveforceandinternalresistanceandtransmissionpowerparameterchangeswiththeexternalcircuit,temperature,generatingmodulegeometryfactors.Wealsostudytheseriesandparallelconnectionthermoelectricmoduleperformance.Fromthepointofviewofnon-equilibriumthermodynamics,themodelofthelowtemperaturedifferenceofthesinglelayerandmultipleelectricappliancesinthelowtemperatureandlowtemperaturestabilitywasestablished.StudyonthermoelectricgeneratorintheinternalstructureandexternalforthemovementofthethermalconditionsBu,combinedwithexperiment,itisconcludedthatthebestmatchingcoefficients,poweroutputandefficiencyarewiththemaximumtemperaturedifferenceapproximatelinearly,andpointsoutthepowergenerationefficiencyislowintheroottherelyontheimprovementofthematerialproperties.Justeastoftheoreticalanalysisandexperimentalstudycombinedbysimulatingthetankventtubeneartheareaofrefrigeratingcondition,bycoolingconditionevaluationofinfraredstealtheffect,itisconcludedthattotankexhaustwasteheatastheheatsourcewillbetheapplicationofthermoelectrictechnologytothetanks,infraredstealthfeasibleconclusion.3.1generationefficiencyAtpresent,theefficiencyofthermoelectricpowergenerationisgenerally5%-7%,farlessthan40%ofthermalpowergeneration.Themainreasonisthattheperformanceofthermoelectricmaterialsisnotgood,ontheotherhandisthematchingofelectricalappliancesfactory.3.1.1thermoelectricmaterialsThermoelectricmaterials,asthecorepartofthermoelectricdevices,directlydeterminetheperformanceofthedevice.TheoptimalvalueofZTisthemostimportantparametertomeasuretheperformanceofthermoelectricmaterials.ThehighertheZTvalue,thebetterthethermoelectricpropertiesofthematerials,thehighertheenergyconversionefficiency.Bi2T3;roomtemperatureZTvalueofabout1,isthemostwidelyusedthermoelectricmaterials.ButthethermoelectricpowergenerationefficiencyofBi2T3materialsisstilllessthan10%.IftheZTvalueofthematerialcanbeincreasedtoabout3,thedifferenceintemperaturewillbecomparabletothatoftheconventionalpowergeneration.Therefore,peopleareactivelylookingforanddevelopmentofhighmeritofnewthermoelectricmaterials,thepresentresearchhotspots:cobaltbasedoxidethermoelectricmaterials,quasicrystalmaterials,superlatticethermoelectricmaterials,nanothermoelectricmaterials.TerasakidiscoveredforthefirsttimeNaCo2O4singlecrystalatroomtemperatureBuhasahigherSeebeckcoefficient,lowresistivityandlowthermalconductivity,thiscausedpeople'sattention,butNaCo2O4inairdeliquescentandmorethan1073Kvolatile,sopeoplelooktoanotherdrillbasedoxidesofCa-Co-Osystem.TheFunahashistudypredicts:Ca2Co2O5inT=873K,ZT=1.22.7.Quasicrystallinethermoelectricmaterialsin1984byShechtmanandotherfirstfoundthatinrecentyearscausedconcern.Thiskindofmaterialhasgoodthermodynamicstability,highresistivity,andhasanegativecoefficientofthermalconductivity,sotheconductiveperformanceisgood,andthethermalconductivityislow.AquasicrystallinethermoelectricmaterialwithZT=1.6atroomtemperaturewaspredicted.Thesuperlatticeisamultilayerheterogeneousstructureformedbytheperiodicalternatinggrowthoftwokindsofsemiconductorsinglecrystalfilms,andeachlayercontainsseveralorevenseverallayers.Duetothespecialstructureandsemiconductorsuperlatticeelectrons(orholes)energywillappearnewquantization,resultingintheincreaseofthedensityofStatesandthereforesuperlatticematerialwithmanynewfeatures.VenkatasubramanianandothermetalorganiccompoundsGasphasedeposition(MOCVE)methodtoprepareBi-Tebasedalloyfilm,ZTvaluereached2.4300K.DresselhausofBinanowiresandquantumwellsystemafteralargenumberofstudiespredictedthatthequantumconfinementeffectcanbeobtainedbysuperlatticeZTvalueofmorethan3ofthematerial.Nanothermoelectricmaterialsisanotherhotresearchtopicinthefieldofthermoelectricmaterials,andtheachievementsareoutstandinginthefieldofZhejiangUniversity.ZhaoXinbingandotherresearchfoundthatthetraditionalBi-Tebasedthermoelectricmaterialstoadd15%containingBi2T3;nanotubepowder,canmakethethermoelectricpropertiesofmaterialsincreasedbyabout20%.Cao,ZT=1.28(Bi,Sb)2Te3wereobtainedbyhydrothermalsynthesis.ZHAOandsoonthroughthenanometerpowderdoping,theZTvalueispreparedtoexceed1.5oftheBi2Te3-Sb2Te3andGeTe-AgSbTe2nanostructurematerials.3.1.2matchingproblemOutputpowerandpowergenerationefficiencyofthermoelectricgeneratorandhightemperatureendtemperature(Th).Lowtemperature(Tc),thermoelectricpowergenerationcircuitcurrent(I),loadresistance(R),electricalresistance(R)andotherfactorsarecloselyrelated.Underdifferentconditions,thedifferenceoftheperformanceofthethermoelectricgeneratorisgreat.QuJianandotherapplicationsoffinitetimethermodynamictheorytoanalyzetheworkingperformanceofthermoelectricgenerator,andgettheconclusionthatthereisthebestparameterworkingarea.PanYuZhuo,suchastheuseofnonequilibriumthermodynamicsoptimizationcontroltheoryanalysisofthermoelectricmodel,numericalsimulationresultsshowthatthematchingundertheconditionoftheworkingparametersofoutputpowerandgeneratingefficiencycanbewereincreasedby39%and20%electricalthermaldesignisalsoaffectingpowergenerationefficiencyareimportantfactors.Inordertomaintainahightemperature,oftenincreasetheheatdissipationdevicegeneratorinlowtemperatureside,sothattheheatdissipationinatimelymanner.Cheinstudynotedthatwhenthedevicethermalresistanceisgreaterthanthemaximumresistanceoftheradiator,theradiatorwillsmallcandispersewalkingdevicegeneratesheat,andthereforethermoelectricgeneratormatchingthecoldendheatdissipationwayalsoaffecttheelectricalperformanceoftheimportantfactors.Atpresentthemainheatdissipationmethod:airandliquidcoolingandheattransformation.Aircoolingisdividedintonaturalandforcedaircooling.Naturalair-cooledheatexchangerisacertainshapeoffinradiator.Theheatresistanceisdirectlyrelatedtothefindensityandtheareaoftheradiator.Thethermoelectricarewidelyappliedintheelectricapplianceisforcedaircooling,radiator(heatsink)combinedwiththefan,coldendheatconductiontothelargerareaoffinwithforcedcoolingheatdissipationintotheair.Thethermalresistancedependsonthewindspeed,thegreaterthewindspeed,thesmallerthethermalresistance.Forcedaircoolingcaneffectivelyimprovetheheattransfercoefficientoftheheatsink,reducetheheatdissipationarea,andthestructureissimple,easytoimplement,soitiswidelyused.Duetoaunitofliquidheatcapacitywassignificantlylargerthanthatofthegas,andliquidcoolingthanair-cooledhasbettercoolingeffect.Studieshaveshownthatliquidcoolingforheattransfercoefficientthanthenaturalaircoolingof100to1000times,sizeonthermalresistancemainlyandliquidflowvelocity,flowislarge,thermalresistanceislow.Atpresent,theliquidcoolingmethodsmainlyincludeliquidjetcooling,microchannelliquidcoolingandmacrowatercooling.Phasechangeheatdissipationistousephasechangematerialphasechangetoabsorbheattoheat.Theheatdissipationmethodissuitablefortheapplicationoftheintermittentworkingsituation,andthemostresearchistheheatdissipationwithphasechangeheatsiphontube.TheresultsofEsartetshowthatthephasetransitionheatsiphoncanobviouslyimprovetheuniformityofheatfluxontheheattransfersurface,reducethethermalresistanceandheatdissipation.3.2reliabilityissuesTheexistenceof3.2.1andmechanicalstressTocommonsandwichtypethermoelectricmodule,forexample,toachievehighpowergenerationefficiency,usuallyrequirepowercomponentsinhotandcoldendformingalargertemperaturedifference,whichwillcausecoldendisconnectedattheendoftheshrinkageorthermalconnectingsheetexpansion,resultinginmechanicalstress.MechanicalstressontheexistenceoftherigidjointsorP,narmiseasytofracturemayeventuallyleadtothedamageofthethermocouple,soastoshortentheservicelifeofthethermoelectricmodule.Inordertoincreasetheresistance,thethicknessofthetransitionlayerissmallerthan0.3mm;(3)thematrixmaterialischanged.Duetoitshighstrength,goodthermalconductivityandlowprice,ithasbecomeoneofthemostwidelyusedmatrixmaterials.Butthehardnessoftheceramicpieceislarge,itiseasytocauseP,Npowerarmbroken.Iftherearesomeflexibleandcansupporttheroleofnewmaterialstoreplacetheceramicpieces,throughtheflexibilityofthematrixtoalleviatethemechanicalstress,willbeabletoeffectivelysolvetheproblemofelectricalarmfracture.3.2.2environmentalfactors(1)moisture.Thereareatleastthreekindsofmaterials,thermoelectricmaterials,solderandconnectingsheetmaterials.Theingressofmoisture,inthecoldjunctionnearthecondensation,formingprimarybatteries,thusproducedtheeffectofelectrolyticcorrosionatthejoint,leadsolderresistanceincreases,finalweldingheadwascompletelydamaged.Itisbettertomakethethermoelectriccomponentsworkinvacuumortoprotecttheinsulationmaterial;(2)hightemperature.Hightemperaturecandamagetheaccelerator.Thereasonistheoxidationandsublimationofthesolder,whichacceleratesthediffusionofcopperandotherimpuritiesintothethermoelectricmaterials.Therearereportsof300K,thediffusionrateofimpuritiesis10-6cm/simpuritydiffusioncausedbymaterialSeebeckcoefficientandtheelectricalconductivitydecreasesrapidly.Atpresent,thecommonlyusedsolutionisinthecopperconnectionpieceandtheelementendsurfacenickelplating,butthenickelplatingprocessisnotideal.4conclusionsDuetoitsuniqueadvantages,thethermoelectricpowergenerationtechnologyhasshownagoodapplicationprospectinaerospaceandmilitaryfields.Atthesametime,asakindofgreenenvironmentalprotection,theapplicationofthecivilfieldinrecentyearshasdevelopedrapidly.Althoughtheefficiencyofthermoelectricpowergenerationisgenerallylowerthan10%,butwiththeelectricalresearchanddevelopmentofnewhighperformancethermoelectricmaterialsandreliableperformanceofthetemperaturedifference,temperaturedifferencepowergenerationtechnologywillbemoregreatlyplaytheadvantageoftheuseoflowgradeenergy.Accordingtotheresearchprogressofthermalpowergenerationtechnologyathomeandabroad,theresearchprogresscanbecarriedoutfromthefollowingthreeaspects:(1)theproblemoflowthermoelectricpowerefficiencyisthefirstonetobreakthroughtheimprovementoftheperformanceofthermoelectricmaterials.Doping,crystalstructure,lowdimensional,superlatticestructureandnanotechnologycanefficientlyimprovethethermoelectricfigureofmerit,andthusbecomethedevelopmentdirectionofthermoelectricmaterials;(2)byANSYSnumericalsimulationandexperimentalstudyoncombinedapproach,ofthethermoelectricelectricalparametersoptimization.Atthesametimeonthelowtemperaturesideimplementationreasonablethermalmanagement,makethetemperaturedifferencegeneratorinthematchingconditions,isalsoanimportantwaytoimprovetheefficiencyofpowergeneration;(3)temperaturedifferencepowergenerationapplicationsincreasinglywidespread,asapartofthesystem,thermoelectricitycomponentreliabilityproblemscannotbeignored.Structuralimprovementcaneffectivelyreducethemechanicalstress,someoftheauxiliarymeasurescanreducetheimpactofenvironmentalfactors,buttherearestillmanyneedstoimprovethework.溫差發(fā)電技術(shù)的研究進(jìn)展及現(xiàn)狀溫差發(fā)電又叫熱電發(fā)電,是一種綠色環(huán)保的發(fā)電方式。溫差發(fā)電技術(shù)具有結(jié)構(gòu)簡(jiǎn)單,堅(jiān)固耐用,無(wú)運(yùn)動(dòng)部件,無(wú)噪聲,使用壽命長(zhǎng)等優(yōu)點(diǎn)??梢院侠砝锰?yáng)能、地?zé)崮堋⒐I(yè)余熱廢熱等低品位能源轉(zhuǎn)化成電能。溫差發(fā)電技術(shù)的研究最早開始于20世紀(jì)40年代。由于其顯著的優(yōu)點(diǎn),溫差發(fā)電在航空、軍事等領(lǐng)域得到了廣泛的應(yīng)用,美國(guó),前蘇聯(lián)先后研發(fā)了數(shù)千個(gè)放射性同位素或核反應(yīng)堆溫差發(fā)電器用作空問(wèn)、海洋裝置的電源。隨著化石能源的日趨枯竭,美國(guó)、日本、歐盟等發(fā)達(dá)國(guó)家更加重視溫差發(fā)電技術(shù)在民用領(lǐng)域的研究,并取得了長(zhǎng)足的進(jìn)展。國(guó)內(nèi)溫差發(fā)電方面的研究,主要集中在發(fā)電器理論和熱電材料制備方面的研究,旨在為溫差發(fā)電器的優(yōu)化提供理論指導(dǎo)和制備性能優(yōu)良的熱電材料,雖然我國(guó)是世界上最大的半導(dǎo)體熱電器件輸出國(guó),但是在溫差發(fā)電器綜合設(shè)計(jì)和應(yīng)用方面的研究還很欠缺,因此研究溫差發(fā)電有著非?,F(xiàn)實(shí)的意義。本文介紹了溫差發(fā)電技術(shù)的原理,回顧了國(guó)內(nèi)外的研究進(jìn)展及現(xiàn)狀,以常見的商用溫差電組件為例,對(duì)溫差發(fā)電中存在的發(fā)電效率低,溫差電組件使用壽命短,可靠性不高等問(wèn)題進(jìn)行了分析,并提出了應(yīng)對(duì)策略。隨著熱電材料性能的提高和溫差電組件可靠性的增加,溫差發(fā)電應(yīng)用前景廣闊。1工作原理溫差發(fā)電是基于熱電材料的塞貝克效應(yīng)發(fā)展起來(lái)的一種發(fā)電技術(shù),將P型和N型兩種不同類型的熱電材料(P型是富空穴材料,N型是富電子材料)一端相連形成一個(gè)PN結(jié),置于高溫狀態(tài),另一端形成低溫,則由于熱激發(fā)作用,P<N)型材料高溫端空穴(電子)濃度高于低溫端,因此在這種濃度梯度的驅(qū)動(dòng)卜,空穴和電子就開始向低溫端擴(kuò)散,從而形成電動(dòng)勢(shì),這樣熱電材料就通過(guò)高低溫端問(wèn)的溫差完成了將高溫端輸入的熱能直接轉(zhuǎn)化成電能的過(guò)程。單獨(dú)的一個(gè)PN結(jié),可形成的電動(dòng)勢(shì)很小,而如果將很多這樣的PN結(jié)串聯(lián)起來(lái),就可以得到足夠高的電壓,成為一個(gè)溫差發(fā)電器廠2國(guó)內(nèi)外溫差發(fā)電技術(shù)的研究進(jìn)展2.1國(guó)外研究進(jìn)展自1821年Seebeck發(fā)現(xiàn)塞貝克效應(yīng)以來(lái),國(guó)外對(duì)溫差發(fā)電進(jìn)行了大量的研究,1947年,第一臺(tái)溫差發(fā)電器問(wèn)世,效率僅為1.5%。1953年,Loffe院士研究小組成功研制出利用煤油燈、拖拉機(jī)熱量作熱源的溫差發(fā)電裝置,在用電困難地區(qū)作小功率電源之用。20世紀(jì)60年代,一些具有較好熱電性能的材料,溫差發(fā)電的研究熱潮達(dá)到高峰,特別是前蘇聯(lián)和美國(guó),由于國(guó)防、軍事等特殊行業(yè)的推動(dòng),溫差發(fā)電技術(shù)的應(yīng)用發(fā)展迅速。到20世紀(jì)60年代末,前蘇聯(lián)先后制造了1000多個(gè)放射性同位素溫差發(fā)電器(RTG),廣泛用于衛(wèi)星電源、燈塔和導(dǎo)航標(biāo)識(shí),其平均使用壽命超過(guò)10年。美國(guó)也不甘落后,其開發(fā)的RTG最長(zhǎng)工作時(shí)問(wèn)已超30年。1961年6月美國(guó)SNAP-3A能源系統(tǒng)投入使用,輸出功率為2.7W,發(fā)電效率5.1%。1977年發(fā)射的木星、土星探測(cè)器上使用的RTG}輸出功率已達(dá)到155W。20世紀(jì)80年代初,美國(guó)又完成500-1000W軍用溫差發(fā)電機(jī)的研制,并于80年代末正式進(jìn)入部隊(duì)裝備。隨著能源危機(jī)和環(huán)境污染的加劇,人們開始關(guān)注溫差發(fā)電在廢余熱利用中的價(jià)值,很多國(guó)家已將發(fā)展溫差電技術(shù)列為中長(zhǎng)期能源開發(fā)計(jì)劃。日本開展了一系列以“固體廢物燃燒能源回收研究計(jì)劃”為題的政府計(jì)劃,研究用于固體廢物焚燒爐的廢熱發(fā)電技術(shù),將透平機(jī)和溫差發(fā)電機(jī)結(jié)合,實(shí)現(xiàn)不同規(guī)模垃圾焚燒熱的最大利用。2003年11月美國(guó)能源部宣布資助太平洋西北國(guó)家實(shí)驗(yàn)室、密西根技術(shù)大學(xué)等單位,重點(diǎn)支持他們?cè)诟咝阅軣犭姴牧虾蛻?yīng)用技術(shù)方面的研究,特別是工業(yè)余熱廢熱的利用。近年來(lái),對(duì)低品位熱源的利用成為溫差發(fā)電技術(shù)研究的大方向。Maneewan等利用置于屋頂?shù)匿摪逦仗?yáng)能集熱升溫與環(huán)境之問(wèn)的溫差發(fā)電,帶動(dòng)軸流風(fēng)})L引導(dǎo)屋頂空氣自然對(duì)流,從而給屋頂降溫。Rida等將溫差發(fā)電器熱端與該國(guó)一種做飯的火爐外壁連接,冷端置于空氣中,利用爐壁高溫與環(huán)境的溫差來(lái)發(fā)電,輸出功率達(dá)4.2W。Hasebe等利用夏日路面高溫做熱源,熱交換管為集熱器,采用19組溫差電組件,在熱管管內(nèi)液體流速為0.7L/min時(shí),輸出功率3.6WThacher等在美國(guó)能源部和紐約州能源研究開發(fā)權(quán)利機(jī)構(gòu)資助下開發(fā)的汽車尾氣余熱發(fā)電系統(tǒng),使用20組HZ-20溫差電組件,熱電材料為Bi-Te基材料,汽車時(shí)速112km/h時(shí),最大溫差174℃,最大輸出功率255W,2006年,BSST的科學(xué)家和BMW聯(lián)合宣布,商用的汽車溫差發(fā)電器將于2013年投入使用。Douglas等針對(duì)熱源動(dòng)態(tài)變化情況,設(shè)計(jì)出多模塊交互回路溫差發(fā)電器,在相同熱源下,輸出功率最大提高25%。2.2國(guó)內(nèi)研究進(jìn)展國(guó)內(nèi)在溫差發(fā)電方面的研究起步相對(duì)較晚,主要集中在理論和熱電材料的制備等方面的研究。陳金燦課題組從20世紀(jì)80年代開始對(duì)溫差發(fā)電器的基礎(chǔ)理論進(jìn)行研究,對(duì)溫差發(fā)電器的性能進(jìn)行優(yōu)化分析,得到很多有意義的成果[no。屈健等李玉東等提出從火用的角度對(duì)低溫差下發(fā)電器的工作性能進(jìn)行分析。賈磊等提出低溫及大溫差工況下湯姆遜熱對(duì)輸出功率的影響不可忽略的觀點(diǎn)。賈陽(yáng)等建立溫差發(fā)電器熱電禍合分析模型,以數(shù)值計(jì)算的方法分析了熱電材料物性參數(shù)及其變化對(duì)發(fā)電器工作特性的影響,得出結(jié)論,材料的導(dǎo)熱系數(shù)、電阻率及塞貝克系數(shù)對(duì)發(fā)電器轉(zhuǎn)換效率的影響均為非線性,其中導(dǎo)熱系數(shù)的影響最明顯。德鵬等分析了溫差發(fā)電器的熱環(huán)境、回路中負(fù)載電阻等參數(shù)及溫差電單體對(duì)的連接方式對(duì)發(fā)電器工作性能的影響,得出提高溫差發(fā)電器熱端加熱熱流或增加冷端的換熱系數(shù)均能提高發(fā)電器的輸出功率及熱電轉(zhuǎn)換效率的結(jié)論。蘇景芳研究了系統(tǒng)與環(huán)境,系統(tǒng)與系統(tǒng)之問(wèn)的熱流關(guān)系,對(duì)系統(tǒng)的性能特性作出優(yōu)化,建立溫差發(fā)電器優(yōu)化設(shè)計(jì)模型,同時(shí)以VB6.0(Mi-crosoftVisualBasic6.0)語(yǔ)言作為開發(fā)工具,ActiveX數(shù)據(jù)對(duì)象訪問(wèn)數(shù)據(jù)庫(kù),編寫了溫差發(fā)電器設(shè)計(jì)軟件。錢衛(wèi)強(qiáng)通過(guò)對(duì)低品位熱源半導(dǎo)體小溫差發(fā)電器性能的研究,總結(jié)了電動(dòng)勢(shì)、內(nèi)阻及輸功率等參數(shù)隨外電路、溫度、發(fā)電組件幾何尺寸等因素的變化規(guī)律,另外研究了串、并聯(lián)情況下溫差電組件的性能。李偉江從非平衡熱力學(xué)角度出發(fā),建立單層多電偶發(fā)電器在低溫差下穩(wěn)定工作的模型。研究溫差發(fā)電器在內(nèi)部結(jié)構(gòu)和外部換熱條件變化情況下的運(yùn)行規(guī)律,與實(shí)驗(yàn)相結(jié)合,得出最佳匹配系數(shù)下,輸出功率和發(fā)電效率均隨最大溫差近似呈線性變化,同時(shí)指出解決發(fā)電效率低的問(wèn)題根本上依靠的是材料性能的改善。剛現(xiàn)東理論分析和實(shí)驗(yàn)研究相結(jié)合,通過(guò)模擬坦克排氣筒附近區(qū)域制冷狀況,由降溫情況評(píng)估紅外隱身效果,得出以坦克尾氣余熱為熱源將溫差電技術(shù)應(yīng)用于坦克紅外隱身完全可行的結(jié)論。3.1發(fā)電效率目前,溫差發(fā)電的效率一般為5%-7%,遠(yuǎn)低于火力發(fā)電的40%。最主要的原因是熱電材料性能不理想,另一方面是發(fā)電器的匹配問(wèn)題廠。3.1.1熱電材料的限制熱電材料作為熱電器件的核心部分,性能的好壞直接決定器件效能的優(yōu)劣。優(yōu)值ZT是衡量熱電材料性能最重要的參數(shù)。ZT值越高,材料的熱電性能越好,能量轉(zhuǎn)換效率越高。Bi2T3;室溫下ZT值1左右,是使用最廣泛的熱電材料。但是以;Bi2T3材料制作的溫差發(fā)電器發(fā)電效率依然低于10%。如果能把材料的ZT值提高到3左右,溫差發(fā)電將可以與傳統(tǒng)的發(fā)電方式相媲美。為此,人們積極尋找和開發(fā)具有較高優(yōu)值的新型熱電材料,目前的研究熱點(diǎn)有:鉆基氧化物熱電材料、準(zhǔn)晶體材料、超晶格薄膜熱電材料、納米熱電材料等。Terasaki等首次發(fā)現(xiàn)NaCo2O4單晶在室溫卜具有較高的Seebeck系數(shù),較低的電阻率和較低的熱導(dǎo)率,為此引起人們的關(guān)注,但是NaCo2O4在空氣中易潮解且超過(guò)1073K時(shí)易揮發(fā),所以人們把目光轉(zhuǎn)向另一種鉆基氧化物Ca-Co-O系。Funahashi的研究預(yù)測(cè):Ca2Co2O5在T≥873K時(shí),ZT=1.2一2.7。準(zhǔn)晶體熱電材料1984年由Shechtman等首次發(fā)現(xiàn),近年來(lái)引起關(guān)注。這種材料熱力學(xué)穩(wěn)定性好,電阻率高,具有負(fù)的導(dǎo)熱系數(shù),故導(dǎo)電性能好,導(dǎo)熱性能低。有研究預(yù)言室溫下可得到ZT=1.6的準(zhǔn)晶體熱電材料。超晶格是由兩種材料的半導(dǎo)體單晶薄膜周期性交替生長(zhǎng)形成的多層異質(zhì)結(jié)構(gòu),每層薄膜含幾個(gè)以至幾}一個(gè)原子層。由于這種特殊結(jié)構(gòu),半導(dǎo)體超晶格中的電子(或空穴)能量將出現(xiàn)新的量子化,進(jìn)而引起態(tài)密度的提高,因此超晶格材料具有許多新的特性。Venkatasubramanian等采用金屬有機(jī)化合物氣相沉積(MOCVE)法將Bi-Te基合金制備成超晶格薄膜,300K時(shí)ZT值達(dá)到2.4。Dresselhaus對(duì)Bi納米線及量子阱系統(tǒng)的大量研究后預(yù)言,通過(guò)超晶格量子限制效應(yīng)可以得到ZT值大于3的材料。納米熱電材料是熱電材料的另一研究熱點(diǎn),浙江大學(xué)在此領(lǐng)域成果卓著。趙新兵等研究發(fā)現(xiàn)傳統(tǒng)Bi-Te基熱電材料中添加15%的含有Bi2T3;納米管粉末,可以使材料的熱電性能提高20%左右。Cao等采用水熱合成法熱壓后得到ZT=1.28的(Bi,Sb)2Te3;納米熱電材料。ZHAO等通過(guò)納米粉末摻雜,制得ZT值均超過(guò)1.5的Bi2Te3-Sb2Te3和GeTe-AgSbTe2納米結(jié)構(gòu)材料。3.1.2匹配問(wèn)題溫差發(fā)電器的輸出功率和發(fā)電效率與高溫端溫度(Th)。低溫端溫度(Tc),溫差發(fā)電回路電流(I),負(fù)載電阻(R),發(fā)電器內(nèi)阻(r)等因素密切相關(guān)。在不同條件下,溫差發(fā)電器的性能差別較大。屈健等應(yīng)用有限時(shí)問(wèn)熱力學(xué)理論對(duì)半導(dǎo)體溫差發(fā)電器的工作性能進(jìn)行了分析,得到溫差發(fā)電存在最佳參數(shù)工作區(qū)的結(jié)論。潘玉灼等采用非平衡態(tài)熱力學(xué)優(yōu)化控制理論分析溫差電模型,數(shù)值模擬結(jié)果表明:最匹配參數(shù)工作條件下輸出功率和發(fā)電效率可分別提高39%和20%發(fā)電器熱設(shè)計(jì)也是影響發(fā)電效率的重要因素。為了保持較高的溫差,往往在發(fā)電器低溫端增加散熱裝置,以使熱量及時(shí)散失。Chein研究指出當(dāng)器件熱阻大于散熱器最大熱阻時(shí),散熱器將小能夠散走器件產(chǎn)生的熱量,因此與溫差發(fā)電器匹配的冷端散熱方式也是影響發(fā)電器性能的重要因素。目前主要的散熱方式有:風(fēng)冷、液冷和相變散熱。風(fēng)冷又分為自然風(fēng)冷和強(qiáng)制風(fēng)冷。自然風(fēng)冷換熱器是一定形狀的翅片散熱器。熱阻大小與翅片密度、散熱器面積直接相關(guān)。目前溫差發(fā)電器中應(yīng)用較多的是強(qiáng)制風(fēng)冷,散熱器(如熱沉)與風(fēng)扇結(jié)合,低溫端熱量傳導(dǎo)到更大面積的翅片上,借助強(qiáng)制散熱將熱量散失到空氣中。熱阻取決于風(fēng)速,風(fēng)速越大,熱阻越小。強(qiáng)制風(fēng)冷可有效地提高散熱器的對(duì)流換熱系數(shù),減小散熱面積,而且結(jié)構(gòu)簡(jiǎn)單,易于實(shí)現(xiàn),因而應(yīng)用廣泛。因液體的單位熱容較氣體大,因而液冷比風(fēng)冷有更好的冷卻效果,研究表明液冷換熱系數(shù)比自然風(fēng)冷散熱大100-1000倍,熱阻大小主要與液體的流速有關(guān),流速越大,熱阻越低。目前應(yīng)用的液體散熱方式主要有液體噴射冷卻、微通道液體冷卻和宏觀水冷管路冷卻。相變散熱是利用相變材料相態(tài)變化時(shí)吸收熱量來(lái)散熱。這種散熱方式適用于問(wèn)歇式工作場(chǎng)合,目前研究最多的是帶相變熱虹吸管散熱。Esartet的研究結(jié)果表明帶相變熱虹吸管可明顯提高熱流在傳熱面的均勻性,減小熱阻,散熱較好。3.2可靠性問(wèn)題3.2.1和機(jī)械應(yīng)力的存在以常見的三明治式溫差電組件為例,要達(dá)到較高的發(fā)電效率,通常要求發(fā)電組件冷熱端之問(wèn)形成較大溫差,這將造成冷端連接片收縮或熱端連接片膨脹,從而產(chǎn)生機(jī)械應(yīng)力。機(jī)械應(yīng)力的存在使得剛性的接頭或P,N電臂很容易斷裂,最終可能導(dǎo)致溫差電偶的損壞,從而縮短了溫差電組件的使用壽命。為了小增加電阻,要求過(guò)渡層厚度小超過(guò)0.3mm;(3)改變基體材料。金屬化陶瓷片由于強(qiáng)度高、導(dǎo)熱性好、價(jià)格低廉,因而成為目前使用最廣泛的基體材料。但是陶瓷片硬度大,極易造成P,N電臂折斷。如果采用有一定柔性而又能起支撐作用的新材料來(lái)代替陶瓷片,通過(guò)基體的柔性來(lái)緩解機(jī)械應(yīng)力,將能有效地解決電臂斷裂的問(wèn)題。3.2.2環(huán)境因索濕氣。焊接處至少存在熱電材料、焊料和連接片材料三種物質(zhì)。濕氣進(jìn)入,在冷接頭附近結(jié)露,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論