2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年福建省安溪縣二級達(dá)標(biāo)高中校際教學(xué)聯(lián)盟數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓C:的焦點為,,點P在橢圓上,若,則的面積為()A.48 B.40C.28 D.242.已知拋物線過點,點為平面直角坐標(biāo)系平面內(nèi)一點,若線段的垂直平分線過拋物線的焦點,則點與原點間的距離的最小值為()A. B.C. D.3.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.4.若兩條平行線與之間的距離是2,則m的值為()A.或11 B.或10C.或12 D.或115.以下命題是真命題的是()A.方差和標(biāo)準(zhǔn)差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點的中心D.若“”為假命題,則均為假命題6.在中,,,,若該三角形有兩個解,則范圍是()A. B.C. D.7.在公比為為q等比數(shù)列中,是數(shù)列的前n項和,若,則下列說法正確的是()A. B.數(shù)列是等比數(shù)列C. D.8.已知拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.99.將一張坐標(biāo)紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.10.下列說法正確的是()A.“若,則,全為0”的否命題為“若,則,全不為0”B.“若方程有實根,則”的逆命題是假命題C.命題“,”的否定是“,”D.“”是“直線與直線平行”的充要條件11.執(zhí)行如圖所示的算法框圖,則輸出的結(jié)果是()A. B.C. D.12.已知角的頂點與坐標(biāo)原點重合,始邊與x軸的非負(fù)半軸重合,角終邊上有一點,為銳角,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是4個幾何體的展開圖,圖①是由4個邊長為3的正三角形組成;圖②是由四個邊長為3的正三角形和一個邊長為3的正方形組成;圖③是由8個邊長為3的正三角形組成;圖④是由6個邊長為3的正方形組成若直徑為4的球形容器(不計容器厚度)內(nèi)有一幾何體,則該幾何體的展開圖可以是______(填所有正確結(jié)論的番號)14.若與直線垂直,那么__________15.已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;16.光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學(xué)裝置由有公共焦點的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在第一象限內(nèi),圓關(guān)于直線對稱,與軸相切,被直線截得的弦長為.(1)求圓的方程;(2)若點,求過點的圓的切線方程.18.(12分)已知等比數(shù)列的前n項和為,,(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個等差數(shù)列,記插入的這n個數(shù)之和為,求數(shù)列的前n項和19.(12分)已知直線經(jīng)過橢圓的右焦點,且橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)以橢圓的短軸為直徑作圓,若點M是第一象限內(nèi)圓周上一點,過點M作圓的切線交橢圓C于P,Q兩點,橢圓C的右焦點為,試判斷的周長是否為定值.若是,求出該定值20.(12分)已知拋物線:的焦點到頂點的距離為.(1)求拋物線的方程;(2)已知過點的直線交拋物線于不同的兩點,,為坐標(biāo)原點,設(shè)直線,的斜率分別為,,求的值.21.(12分)已知拋物線C:焦點F的橫坐標(biāo)等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點,判斷原點與以線段AB為直徑的圓的位置關(guān)系,并說明理由.22.(10分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計算作答.【題目詳解】橢圓C:的半焦距,長半軸長,由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D2、B【解題分析】將點的坐標(biāo)代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標(biāo),分析可知點的軌跡是以點為圓心,半徑為的圓,利用圓的幾何性質(zhì)可求得點與原點間的距離的最小值.【題目詳解】將點的坐標(biāo)代入拋物線的方程得,可得,故拋物線的方程為,易知點,由中垂線的性質(zhì)可得,則點的軌跡是以點為圓心,半徑為的圓,故點的軌跡方程為,如下圖所示:由圖可知,當(dāng)點、、三點共線且在線段上時,取最小值,且.故選:B.3、A【解題分析】由得,為邊的中點得,設(shè),所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當(dāng)時可判斷D選項.【題目詳解】由得,因為為邊的中點,所以,所以設(shè),所以,所以,當(dāng)時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當(dāng)時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.4、A【解題分析】利用平行線間距離公式進(jìn)行求解即可.【題目詳解】因為兩條平行線與之間的距離是2,所以,或,故選:A5、A【解題分析】A:根據(jù)方差和標(biāo)準(zhǔn)差的定義進(jìn)行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點進(jìn)行判斷;D:根據(jù)“且”命題真假關(guān)系進(jìn)行判斷.【題目詳解】對于A,方差和標(biāo)準(zhǔn)差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A6、D【解題分析】根據(jù)三角形解得個數(shù)可直接構(gòu)造不等式求得結(jié)果.【題目詳解】三角形有兩個解,,即.故選:D.7、D【解題分析】根據(jù)等比數(shù)列的通項公式、前項和公式的基本量運算,即可得到答案;【題目詳解】,,故A錯誤;,,顯然數(shù)列不是等比數(shù)列,故B錯誤;,故C錯誤;,,故D成立;故選:D8、A【解題分析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【題目詳解】由題意,拋物線上一橫坐標(biāo)為5的點到焦點的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.9、D【解題分析】設(shè),,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標(biāo),折痕與直線AB垂直,進(jìn)而求出斜率,用點斜式求出折痕所在直線方程.【題目詳解】,,所以與的中點坐標(biāo)為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D10、D【解題分析】A選項,全為0的否定是不全為0;B選項,先寫出逆命題,再判斷出真假;C選項,命題“,”的否定是“,”,D選項,根據(jù)直線平行,列出方程和不等式,求出,進(jìn)而判斷出充要條件.【題目詳解】“若,則,全為0”的否命題為“若,則,不全為0”,A錯誤;若方程有實根,則的逆命題是若,則方程有實根,由得:,其中,所以若,則方程有實根是真命題,故B錯誤;命題“,”的否定是“,”,C錯誤;直線與直線平行,需要滿足且,解得:,所以“”是“直線與直線平行”的充要條件,D正確;故選:D11、B【解題分析】列舉出循環(huán)的每一步,利用裂項相消法可求得輸出結(jié)果.【題目詳解】第一次循環(huán),不成立,,;第二次循環(huán),不成立,,;第三次循環(huán),不成立,,;以此類推,最后一次循環(huán),不成立,,.成立,跳出循環(huán)體,輸出.故選:B.12、C【解題分析】根據(jù)角終邊上有一點,得到,再根據(jù)為銳角,且,求得,再利用兩角差的正切函數(shù)求解.【題目詳解】因為角終邊上有一點,所以,又因為為銳角,且,所以,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①【解題分析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進(jìn)而求其外接球半徑,并與4比較大小,即可確定答案.【題目詳解】若幾何體外接球球心為,半徑為,①由題設(shè),幾何體為棱長為3的正四面體,為底面中心,則,,所以,可得,即,滿足要求;②由題設(shè),幾何體為棱長為3的正四棱錐,為底面中心,則,所以,可得,即,不滿足要求;③由題設(shè),幾何體為棱長為3的正八面體,其外接球直徑同棱長為3的正四棱錐,故不滿足要求;④由題設(shè),幾何體為棱長為3的正方體,體對角線的長度即為外接球直徑,所以,不滿足要求;故答案為:①14、【解題分析】由兩條直線垂直知,得15、(1)(2)詳見解析【解題分析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【題目詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時,在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時,若和時,;若時,;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【題目點撥】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.16、##0.75【解題分析】根據(jù)橢圓和雙曲線定義用長半軸長和實半軸長表示出撤掉裝置前后的路程,然后由已知可解.【題目詳解】記橢圓的長半軸長為,雙曲線的實半軸長為,由橢圓和雙曲線的定義有:,得,即,又由橢圓定義知,,因為,所以,即所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解題分析】(1)結(jié)合點到直線的距離公式、弦長公式求得,由此求得圓的方程.(2)根據(jù)過的圓的切線的斜率是否存在進(jìn)行分類討論,結(jié)合點到直線的距離公式求得切線方程.【小問1詳解】由題意,設(shè)圓的標(biāo)準(zhǔn)方程為:,圓關(guān)于直線對稱,圓與軸相切:…①點到的距離為:,圓被直線截得的弦長為,,結(jié)合①有:,,又,,,圓的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線的斜率不存在時,滿足題意當(dāng)直線的斜率存在時,設(shè)直線的斜率為,則方程為.又圓C的圓心為,半徑,由,解得.所以直線方程為,即即直線的方程為或.18、(1);(2)【解題分析】(1)設(shè)等比數(shù)列公比為q,利用與關(guān)系可求q,在中令n=1可求;(2)根據(jù)等差數(shù)列前n項和公式可求,分析{}的通項公式,利用錯位相減法求其前n項和.【小問1詳解】設(shè)等比數(shù)列的公比為q,由己知,可得,兩式相減可得,即,整理得,可知,已知,令,得,即,解得,故等比數(shù)列的通項公式為;【小問2詳解】由題意知在與之間插入n個數(shù),這個數(shù)組成以為首項的等差數(shù)列,∴,設(shè){}前n項和為,①①×3:②①-②:19、(1)(2)周長是定值,且定值為4【解題分析】(1)首先求出直線與軸的交點,即可求出,再根據(jù)離心率求出,最后根據(jù)求出,即可得解;(2):設(shè)直線的方程為、、,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,即可表示出弦的長,再根據(jù)直線與圓相切,則圓心到直線的距離等于半徑,即可得到,再求出、,最后根據(jù)計算即可得解;【小問1詳解】解:因為經(jīng)過橢圓的右焦點,令,則,所以橢圓的右焦點為,可得:,又,可得:,由,所以,∴橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】解:設(shè)直線的方程為,由得:,所以,設(shè),,則:,所以.因為直線與圓相切,所以,即,所以,因為,又,所以,同理.所以,即的周長是定值,且定值為420、(1)(2)【解題分析】(1)由拋物線的幾何性質(zhì)有焦點到頂點的距離為,從而即可求解;(2)當(dāng)直線的斜率不存在時,不符合題意;當(dāng)直線的斜率存在時,設(shè)的方程為,,,聯(lián)立拋物線的方程,由韋達(dá)定理及兩點間的斜率公式即可求解.【小問1詳解】解:依題意,,解得,∴拋物線的方程為;【小問2詳解】解:當(dāng)直線的斜率不存在時,直線與拋物線僅有一個交點,不符合題意;當(dāng)直線的斜率存在時,設(shè)的方程為,,,由消去可得,∵直線交拋物線于不同的兩點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論