版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學年福建省泉州市泉港區(qū)第六中學數(shù)學高二上期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知在空間直角坐標系(O為坐標原點)中,點關(guān)于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.2.某考點配備的信號檢測設備的監(jiān)測范圍是半徑為100米的圓形區(qū)域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發(fā),沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續(xù)監(jiān)測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘3.我國新冠肺炎疫情防控進入常態(tài)化,各地有序進行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量4.已知雙曲線,則雙曲線的離心率為()A. B.C. D.5.以軸為對稱軸,頂點為坐標原點,焦點到準線的距離為4的拋物線方程是()A. B.C.或 D.或6.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.27.設是雙曲線的兩個焦點,是雙曲線上的一點,且,則的面積等于()A. B.C.24 D.488.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.9.設數(shù)列的前項和為,若,,,則、、、中,最大的是()A. B.C. D.10.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.11.1852年英國來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14412.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過點作直線,直線與連接兩點線段總有公共點,則直線的斜率的取值范圍是________14.如圖,設正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______15.已知圓柱軸截面是邊長為4的正方形,則圓柱的側(cè)面積為______________
.16.經(jīng)過點且與雙曲線有公共漸近線的雙曲線方程為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中為實數(shù).(1)若函數(shù)的圖像在處的切線與直線平行,求函數(shù)的解析式;(2)若,求在上的最大值和最小值.18.(12分)在①,②,③這三個條件中任選一個,補充在下面橫線上,并解答.在中,內(nèi)角,,的對邊分別為,,,且___________.(1)求角的大??;(2)已知,,點在邊上,且,求線段的長.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值20.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.21.(12分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標原點,當m為何值時,=0.22.(10分)在平面直角坐標系中,圓C:,直線l:(1)若直線l與圓C相切于點N,求切點N的坐標;(2)若,直線l上有且僅有一點A滿足:過點A作圓C的兩條切線AP、AQ,切點分別為P,Q,且使得四邊形APCQ為正方形,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】根據(jù)點關(guān)于坐標軸對稱的性質(zhì),結(jié)合空間向量夾角公式進行求解即可.【題目詳解】因為點關(guān)于x軸的對稱點為,所以,設平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B2、C【解題分析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續(xù)監(jiān)測的時長.【題目詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監(jiān)測,到處監(jiān)測結(jié)束,因為到的距離為米,所以米,故監(jiān)測時長為分鐘故選:C.3、C【解題分析】由折線圖逐項分析得到答案.【題目詳解】對于選項A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項A正確;對于選項B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項B正確;對于選項C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項C錯誤;對于選項D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.4、D【解題分析】由雙曲線的方程及雙曲線的離心率即可求解.【題目詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.5、C【解題分析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標準方程.【題目詳解】依題意設拋物線方程為因為焦點到準線的距離為4,所以,所以,所以拋物線方程或故選:C6、B【解題分析】根據(jù),利用等比數(shù)列的通項公式求解.【題目詳解】因為,所以,則,解得,所以.故選:B7、C【解題分析】雙曲線的實軸長為2,焦距為.根據(jù)題意和雙曲線的定義知,所以,,所以,所以.所以.故選:C【題目點撥】本題主要考查了焦點三角形以及橢圓的定義運用,屬于基礎(chǔ)題型.8、B【解題分析】寫出每次循環(huán)的結(jié)果,即可得到答案.【題目詳解】當時,,,,;,此時,退出循環(huán),輸出的的為.故選:B【題目點撥】本題考查程序框圖的應用,此類題要注意何時循環(huán)結(jié)束,建議數(shù)據(jù)不大時采用寫出來的辦法,是一道容易題.9、C【解題分析】求出的表達式,解不等式可得結(jié)果.【題目詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當時,最大.故選:C.10、D【解題分析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【題目詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.11、A【解題分析】分析數(shù)列的特點,可知其是等差數(shù)列,寫出其通項公式,進而求得結(jié)果,【題目詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項為10,公差為12的等差數(shù)列,所以,故,故選:A.12、B【解題分析】由條件可得,即可得到答案.【題目詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】求出的斜率,結(jié)合圖形可得結(jié)論【題目詳解】,,而,因此,故答案為:14、##【解題分析】建立空間直角坐標系,利用空間向量法求出異面直線所成角;【題目詳解】解:如圖建立空間直角坐標系,則、、、,所以,,設直線與所成角為,則,因為,所以;故答案為:15、【解題分析】由圓柱軸截面的性質(zhì)知:圓柱體的高為,底面半徑為,根據(jù)圓柱體的側(cè)面積公式,即可求其側(cè)面積.【題目詳解】由圓柱的軸截面是邊長為4的正方形,∴圓柱體的高為,底面半徑為,∴圓柱的側(cè)面積為.故答案為:.16、【解題分析】由題意設所求雙曲線的方程為,∵點在雙曲線上,∴,∴所求的雙曲線方程為,即答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),【解題分析】(1)根據(jù)平行關(guān)系得到切線斜率,進而得到導函數(shù)在處的函數(shù)值,列出方程,求出,進而得到函數(shù)解析式;(2)先由求出,再利用導函數(shù)求單調(diào)性和最值.【小問1詳解】,.由題意得:,解得:.,【小問2詳解】,則,解得,,,當,解得:,即函數(shù)在單調(diào)遞減,當,解得:或,即函數(shù)分別在,遞增.又,,,,,.18、(1)(2)【解題分析】(1)若選①,則根據(jù)正弦定理,邊化角,結(jié)合二倍角公式,求得,可得答案;若選②,則根據(jù)余弦定理和三角形面積公式,將化簡,求得,可得答案;若選③,則切化弦,化簡可得到的值,求得答案;(2)由余弦定理求出,進而求得,設,,在中用余弦定理列出方程,求得答案.【小問1詳解】若選①,則根據(jù)正弦定理可得:,由于,,故,則;若選②,則,即,則,而,故;若選③,則,即,則,而,故;【小問2詳解】如圖示:,故,故,在中,設,則,則,即,解得,或(舍去)故.19、(1)證明見解析;(2).【解題分析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進行證明即可;(2)建立空間直角坐標系,根據(jù)空間向量夾角公式進行求解即可.【題目詳解】(1)證明:連接,交于點,∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點,連接,∵是邊長為4的菱形,,∴,,以為原點,,,所在直線分別為,,軸建立如圖所示的空間直角坐標系,則,,,,∴,,設平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為20、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解題分析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設點的坐標和直線方程,聯(lián)立方程,解出的y坐標值與P的坐標之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當且僅當時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設,易知直線和直線的坐標均不為零,因為,所以設直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當且僅當,時取等號,所以的最大值為.21、(1)y2=4x(2)m=﹣4或m=0【解題分析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結(jié)合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問2詳解】因為直線y=x+m與拋物線C交于A,B兩點,設A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因為,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.22、(1)或(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025餐飲品牌加盟合同范本
- 二零二五年健康管理與健康管理服務合同
- 2025年SSL證書管理及安全評估合同2篇
- 2024技術(shù)開發(fā)合作與轉(zhuǎn)讓合同
- 2025版?zhèn)鶛?quán)債務轉(zhuǎn)讓與債務優(yōu)化服務協(xié)議3篇
- 2025木工班組勞務承包合同模板
- 2025版數(shù)據(jù)中心設備安裝工程承包服務協(xié)議3篇
- 2025年戶外運動場所木地板鋪設與維護服務合同范本3篇
- 2024年適用最高額擔保協(xié)議模板版B版
- 2025版舊機動車交易稅費代繳合同范本3篇
- 2022-2023學年廣東省廣州市花都區(qū)六年級(上)期末英語試卷(含答案)
- 公司合伙人合作協(xié)議書范本
- 2024年中考地理復習 人教版全四冊重點知識提綱
- 電梯季度維護保養(yǎng)項目表
- GB/T 44188-2024危險貨物爆炸品無約束包裝件試驗方法
- 機動車檢測站質(zhì)量手冊(根據(jù)補充技術(shù)要求修訂)
- 2024年(學習強國)思想政治理論知識考試題庫與答案
- 基于LoRa通信的智能家居系統(tǒng)設計及研究
- YYT 0741-2009 數(shù)字化醫(yī)用X射線攝影系統(tǒng) 專用技術(shù)條件
- 《大數(shù)據(jù)分析技術(shù)》課程標準
- 2024屆高考考前強化之分析小說人物心理作用及變化過程
評論
0/150
提交評論