版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西省撫州市高二數(shù)學第一學期期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則以下說法不正確的是()A. B.C. D.2.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.3.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設命題p:若m是質數(shù),則m一定是奇數(shù),那么是真命題;其中真命題的個數(shù)為()A.3 B.2C.1 D.04.若圓C:上有到的距離為1的點,則實數(shù)m的取值范圍為()A. B.C. D.5.函數(shù)單調減區(qū)間是()A. B.C.和 D.6.函數(shù)極小值為()A. B.C. D.7.圓與圓的位置關系是()A.相離 B.內含C.相切 D.相交8.已知,分別為雙曲線:的左,右焦點,以為直徑的圓與雙曲線的右支在第一象限交于點,直線與雙曲線的右支交于點,點恰好為線段的三等分點(靠近點),則雙曲線的離心率等于()A. B.C. D.9.設、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則10.從集合中任取兩個不同元素,則這兩個元素相差的概率為()A. B.C. D.11.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.12.已知,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l是拋物線()的準線,半徑為的圓過拋物線的頂點O和焦點F,且與l相切,則拋物線C的方程為___________;若A為C上一點,l與C的對稱軸交于點B,在中,,則的值為___________.14.已知數(shù)列滿足,若對任意恒成立,則實數(shù)的取值范圍為________15.若向量滿足,則_________.16.等軸(實軸長與虛軸長相等)雙曲線的離心率_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求函數(shù)在時的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.18.(12分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調查,并將調查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)直方圖估算:(1)在該地隨機調查一位在崗居民,該居民收入在區(qū)間內的概率;(2)該地區(qū)在崗居民月收入的平均數(shù)和中位數(shù);20.(12分)在平面直角坐標系中,已知點.點M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經過點,與軌跡C分別交于點M、N,與直線交于點Q,求證:.21.(12分)已知函數(shù).(1)討論的單調性;(2)當時,求函數(shù)在內的零點個數(shù).22.(10分)在平面直角坐標系xOy中,O為坐標原點,已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點M在第一三象限的角平分線上.(1)求實數(shù)m的值;(2)若點P在直線l上且,求點P的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】可根據(jù)已知的和的坐標,通過計算向量數(shù)量積、向量的模,即可做出判斷.【題目詳解】因為向量,,所以,故,所以選項A正確;,,所以,故選項B正確;,所以,故選項C錯誤;,所以,,故,所以選項D正確.故選:C.2、B【解題分析】求出,進而求出,之間的關系,即可求解結論【題目詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B3、B【解題分析】寫出逆否命題可判斷①;根據(jù)互斥事件的概率定義可判斷②;根據(jù)寫出再判斷真假可判斷③.【題目詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質數(shù),則m一定是奇數(shù).2是質數(shù),但2是偶數(shù),命題p是假命題,那么真命題故選:B.4、C【解題分析】利用圓與圓的位置關系進行求解即可.【題目詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C5、B【解題分析】根據(jù)函數(shù)求導,然后由求解.【題目詳解】因為函數(shù),所以,由,解得,所以函數(shù)的單調遞減區(qū)間是,故選:B6、A【解題分析】利用導數(shù)分析函數(shù)的單調性,可求得該函數(shù)的極小值.【題目詳解】對函數(shù)求導得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.7、D【解題分析】先由圓的方程得出兩圓的圓心坐標和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【題目詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D8、C【解題分析】設,,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關于,的方程,再由離心率公式即可求解.【題目詳解】設,則,由雙曲線的定義可得:,,因為點在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題9、C【解題分析】利用原命題與逆否命題之間的關系可得結論.【題目詳解】由原命題與逆否命題之間的關系可知,命題“若,則”的逆否命題是“若,則”.故選:C.10、B【解題分析】一一列出所有基本事件,然后數(shù)出基本事件數(shù)和有利事件數(shù),代入古典概型的概率計算公式,即可得解.【題目詳解】解:從集合中任取兩個不同元素的取法有、、、、、共6種,其中滿足兩個元素相差的取法有、、共3種.故這兩個元素相差的概率為.故選:B.11、B【解題分析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【題目詳解】解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著車和車,同時進來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B12、D【解題分析】利用空間向量共線的坐標表示可求得、的值,即可得解.【題目詳解】因為,則,所以,,,因此,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解題分析】(1)由題意得:圓的圓心橫坐標為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點的坐標,即可得到答案;【題目詳解】由題意得:圓的圓心橫坐標為,半徑為,,拋物線C的方程為;設到準線的距離為,,,,,代入,解得:,,,故答案為:;14、【解題分析】根據(jù)給定條件求出,構造新數(shù)列并借助單調性求解作答.【題目詳解】在數(shù)列中,,當,時,,則有,而滿足上式,因此,,,顯然數(shù)列是遞增數(shù)列,且,,又對任意恒成立,則,所以實數(shù)的取值范圍為.故答案為:【題目點撥】思路點睛:給定數(shù)列的前項和或者前項積,求通項時,先要按和分段求,然后看時是否滿足時的表達式,若不滿足,就必須分段表達.15、【解題分析】根據(jù)題目條件,利用模的平方可以得出答案【題目詳解】∵∴∴.故答案為:.16、【解題分析】由題意可知,,由,化簡可求離心率.【題目詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)最大值為9,最小值為;(2).【解題分析】(1)利用導數(shù)研究函數(shù)的單調性,進而確定在的極值、端點值,比較它們的大小即可知最值.(2)討論參數(shù)a的符號,利用導數(shù)研究的單調性,結合已知區(qū)間的極值情況求參數(shù)a的范圍即可.【小問1詳解】由題,時,,則,令,得或1,則時,,單調遞增;時,,單調遞減;時,,單調遞增.∴在時取極大值,在時取極小值,又,,綜上,在區(qū)間上取得的最大值為9,最小值為.小問2詳解】,且,當時,單調遞增,函數(shù)沒有極值;當時,時,單調遞增;時,單調遞減;時,,單調遞增.∴在取得極大值,在取得極小值,則;當時,時,單調遞增;時,單調遞減;時,,單調遞增.∴在取得極大值,在取得極小值,由得:.綜上,函數(shù)在區(qū)間存在極小值時a的取值范圍是.18、(1)(2)【解題分析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(2)由,用錯位相減法求和即可.【題目詳解】(1)∵,∴①又∵成等比數(shù)列,∴,②∵,由①②解得:,,∴(2)∵,,∴兩式相減,得∴【題目點撥】本題考查了等差數(shù)列基本量的計算,錯位相減法求和,屬于中檔題.19、(1)(2)平均數(shù)為;中位數(shù)為.【解題分析】(1)直接根據(jù)概率和為1計算得到答案.(2)根據(jù)平均數(shù)和中位數(shù)的定義直接計算得到答案.【小問1詳解】該居民收入在區(qū)間內的概率為:【小問2詳解】居民月收入的平均數(shù)為:.第一組概率為,第二組概率為,第三組概率為,設居民月收入的中位數(shù)為,則,解得.20、(1)(2)證明見解析【解題分析】(1)根據(jù)已知得點M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設為,與橢圓方程聯(lián)立,利用韋達定理及線段長公式進行計算即可.【小問1詳解】由橢圓定義得,點M的軌跡C為以點為焦點,長軸長為4的橢圓,設此橢圓的標準方程為,則由題意得,所以C方程為;【小問2詳解】設點的坐標分別為,由題意知直線的斜率一定存在,設為,則直線的方程可設為,與橢圓方程聯(lián)立可得,由韋達定理知,所以,,又因為,所以又由題知,所以,所以,所以,得證.21、(1)當,在單調遞增;當,在單調遞增,在單調遞減.(2)0.【解題分析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當時,,在單調遞增;當時,令,可得,且令,解得,令,解得,故在單調遞增,在單調遞減.綜上所述:當,在單調遞增;當,在單調遞增,在單調遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調遞減,又當時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調遞增,令,解得,此時該函數(shù)單調遞減,又當時,,也即;令,則,令,解得,此時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海洋潛標系統(tǒng)合作協(xié)議書
- 2024-2025學年海南省定安縣四年級(上)期末數(shù)學試卷
- 2022年國家開放大學電大《心理學》過關練習試題A卷-含答案
- 建筑地基處理技術規(guī)范考試試題及答案
- 2025年人教版四年級數(shù)學下冊教學工作總結(四篇)
- 2025年二年級語文組工作總結范文(二篇)
- 2025年中央空調安裝工程承包合同(2篇)
- 2025年二年級下學期班主任工作計劃總結(2篇)
- 2025年二年級語文教師教學總結(三篇)
- 2025年二手房屋裝修合同(五篇)
- 《配電網(wǎng)設施可靠性評價指標導則》
- 2024年國家電網(wǎng)招聘之通信類題庫附參考答案(考試直接用)
- CJJ 169-2012城鎮(zhèn)道路路面設計規(guī)范
- 食品企業(yè)日管控周排查月調度記錄及其報告格式參考
- 產品質量法解讀課件1
- 第八單元金屬和金屬材料單元復習題-2023-2024學年九年級化學人教版下冊
- 倉庫搬遷及改進方案課件
- 精神科護理技能5.3出走行為的防范與護理
- 采購管理學教學課件
- 《供應商質量會議》課件
- 江蘇省科技企業(yè)孵化器孵化能力評價研究的中期報告
評論
0/150
提交評論