2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件2.在數(shù)列中,,,則()A. B.C. D.3.不等式解集為()A. B.C. D.4.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定5.已知數(shù)列是以1為首項,2為公差的等差數(shù)列,是以1為首項,2為公比的等比數(shù)列,設(shè),,則當(dāng)時,n的最大值是()A.8 B.9C.10 D.116.已知等比數(shù)列的前項和為,若公比,則=()A. B.C. D.7.點到直線的距離是()A. B.C. D.8.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機調(diào)查了名學(xué)生,其中到過中共一大會址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項調(diào)查,估計該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.9.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)10.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數(shù)是()A. B.C. D.11.已知圓,圓,M,N分別是圓上的動點,P為x軸上的動點,則以的最小值為()A B.C. D.12.若點P是曲線上任意一點,則點P到直線的最小距離為()A.0 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點為橢圓上的動點,為圓的任意一條直徑,則的最大值是__________14.某中學(xué)擬從4月16號至30號期間,選擇連續(xù)兩天舉行春季運動會,從已往的氣象記錄中隨機抽取一個年份,記錄天氣結(jié)果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計運動會期間不下雨的概率為_____________.15.已知A,B為x,y正半軸上的動點,且,O為坐標(biāo)原點,現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.16.在空間直角坐標(biāo)系中,點到x軸的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.18.(12分)已知直線,直線,直線(1)若與的傾斜角互補,求m的值;(2)當(dāng)m為何值時,三條直線能圍成一個直角三角形19.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.20.(12分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.21.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.22.(10分)已知函數(shù)(1)當(dāng)時,求曲線在點(0,f(0))處的切線方程;(2)若存在,使得不等式成立,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【題目詳解】由題意,數(shù)列是等比數(shù)列,設(shè)等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當(dāng),可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.2、A【解題分析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【題目詳解】由,得,所以,所以.故選:A.3、C【解題分析】化簡一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【題目詳解】不等式整理得,解得或,則不等式解集為.故選:.4、C【解題分析】利用向量法判斷平面與平面的位置關(guān)系.【題目詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C5、B【解題分析】先求出數(shù)列和的通項公式,然后利用分組求和求出,再對進(jìn)行賦值即可求解.【題目詳解】解:因為數(shù)列是以1為首項,2為公差的等差數(shù)列所以因為是以1為首項,2為公比的等比數(shù)列所以由得:當(dāng)時,即當(dāng)時,當(dāng)時,所以n的最大值是.故選:B.【題目點撥】關(guān)鍵點睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.6、A【解題分析】根據(jù)題意,由等比數(shù)列的通項公式與前項和公式直接計算即可.【題目詳解】由已知可得.故選:A.7、B【解題分析】直接使用點到直線距離公式代入即可.【題目詳解】由點到直線距離公式得故選:B8、B【解題分析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生人數(shù).【題目詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【題目點撥】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.9、A【解題分析】直接根據(jù)空間向量的線性運算,即可得到答案;【題目詳解】,故選:A10、C【解題分析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數(shù)進(jìn)行一一的判斷即可【題目詳解】對于A,,則,令,解得或,即有解,故選項A的函數(shù)有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數(shù),∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數(shù)有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數(shù)沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數(shù)有“巧值點”,不符合題意故選:C11、A【解題分析】求出圓關(guān)于軸的對稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【題目詳解】圓關(guān)于軸對稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點共線時,取得最小值,的最小值為圓與圓的圓心距減去兩個圓的半徑和,即:.故選:A.注意:9至12題為多選題12、D【解題分析】由導(dǎo)數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標(biāo),求出切點到直線的距離即為所求最小距離【題目詳解】點是曲線上的任意一點,設(shè),令,解得1或(舍去),,∴曲線上與直線平行的切線的切點為,點到直線的最小距離.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】設(shè)點,則且,計算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【題目詳解】解:圓的圓心為,半徑長為,設(shè)點,由點為橢圓上的動點,可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時,取得最大值,即.故答案為:.14、【解題分析】以每相鄰兩天為一個基本事件,求出試驗的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計算作答.【題目詳解】依題意,以每相鄰兩天為一個基本事件,如16號與17號、17號與18號為不同的兩個基本事件,則從4月16號至30號期間,共有14個基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個不同結(jié)果,所以運動會期間不下雨的概率為.故答案為:15、32【解題分析】建立平面直角坐標(biāo)系,設(shè)出角度和邊長,表達(dá)出點坐標(biāo),進(jìn)而表達(dá)出,利用三角函數(shù)換元,求出最大值.【題目詳解】如圖,過點D作DE⊥x軸于點E,過點C作CF⊥y軸于點F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當(dāng)時,取得最大值,最大值為32故答案為:3216、【解題分析】由空間直角坐標(biāo)系中點到軸的距離為計算可得【題目詳解】解:空間直角坐標(biāo)系中,點到軸的距離為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.18、(1)(2)0,,.【解題分析】(1)根據(jù)題意得,進(jìn)而求解得答案;(2)根據(jù)題意,分別討論與垂直,與垂直,與垂直求解,并檢驗即可得答案【小問1詳解】解:因為與的傾斜角互補,所以,直線變形為,故所以,解得【小問2詳解】解:由題意,若和垂直可得:,解得,因為當(dāng)時,,,,構(gòu)不成三角形,當(dāng)時,經(jīng)驗證符合題意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,經(jīng)驗證符合題意;故m的值為:0,,.19、(1);(2).【解題分析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點到直線的距離最小,最小值為,故函數(shù)圖象上的點到直線的距離的最小值為.20、(1)證明見解析(2)【解題分析】(1)建立空間直角坐標(biāo)系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點,分別以,為軸、軸,過作軸,建立如圖空間直角坐標(biāo)系,則,,,,,,的中點,則,,∵,∴.【小問2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.21、(1)(2)【解題分析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結(jié)果;(2)若是假命題,是真命題,則一真一假,分兩種情況進(jìn)行求解,最后求并集即為結(jié)果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結(jié)合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結(jié)果為【小問2詳解】是假命題,是真命題,則一真一假,結(jié)合(1)中所求,當(dāng)真假時,與取交集,結(jié)果為;當(dāng)假真時,與取交集,結(jié)果為,綜上:m的取值范圍是.22、(1)(2)【解題分析】(1)利用導(dǎo)數(shù)求出切線斜率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論