2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題含解析_第1頁
2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題含解析_第2頁
2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題含解析_第3頁
2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題含解析_第4頁
2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆天津市第100中學數(shù)學高三第一學期期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A.1 B.2 C.3 D.42.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.3.若平面向量,滿足,則的最大值為()A. B. C. D.4.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.6.集合的子集的個數(shù)是()A.2 B.3 C.4 D.87.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.8.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.79.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件10.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數(shù)大約為()A. B. C. D.11.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.12.我國南北朝時的數(shù)學著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為______.14.某城市為了解該市甲、乙兩個旅游景點的游客數(shù)量情況,隨機抽取了這兩個景點20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內時,甲景點比乙景點多______天.15.若實數(shù)滿足不等式組,則的最小值是___16.定義在R上的函數(shù)滿足:①對任意的,都有;②當時,,則函數(shù)的解析式可以是______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)當時,解不等式;(2)設,且當時,不等式有解,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.20.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.21.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設正數(shù)等比數(shù)列的前項和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

結合分段函數(shù)的解析式,先求出,進而可求出.【題目詳解】由題意可得,則.故選:C.【題目點撥】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質,考查運算求解能力,屬于基礎題.2、D【解題分析】

設,,去絕對值,根據(jù)余弦函數(shù)的性質即可求出.【題目詳解】因為實數(shù),滿足,設,,,恒成立,,故則的最小值等于.故選:.【題目點撥】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.3、C【解題分析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【題目詳解】由題意可得:,,,故選:C【題目點撥】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.4、C【解題分析】

討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【題目詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【題目點撥】本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.5、C【解題分析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖6、D【解題分析】

先確定集合中元素的個數(shù),再得子集個數(shù).【題目詳解】由題意,有三個元素,其子集有8個.故選:D.【題目點撥】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.7、C【解題分析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【題目詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【題目點撥】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.8、D【解題分析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【題目詳解】在中,,,,點滿足,可得則==【題目點撥】本題考查了向量的數(shù)量積運算,關鍵是利用基向量表示所求向量.9、D【解題分析】

對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關系即可做出判斷.【題目詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【題目點撥】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.10、A【解題分析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區(qū)域和所求事件構成的區(qū)域轉化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數(shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.11、C【解題分析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.12、C【解題分析】設這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質得,故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

變換得到,計算焦點得到答案.【題目詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【題目點撥】本題考查了拋物線的焦點坐標,屬于簡單題.14、72【解題分析】

根據(jù)給定的莖葉圖,得到游客人數(shù)在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數(shù),得到答案.【題目詳解】由題意,根據(jù)給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數(shù)中,游客人數(shù)在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數(shù)在內時,甲景點比乙景點多天.故答案為:.【題目點撥】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、-1【解題分析】作出可行域,如圖:由得,由圖可知當直線經(jīng)過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-116、(或,答案不唯一)【解題分析】

由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【題目詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【題目點撥】本題考查抽象函數(shù)的性質,涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構造不等式求得結果.【題目詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數(shù)的取值范圍是.【題目點撥】本題考查絕對值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數(shù)與函數(shù)最值之間的比較問題.18、(1)見證明;(2)【解題分析】

(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法向量,代入公式,即可得到結果.【題目詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,,,,,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【題目點撥】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據(jù)定理結論求出相應的角和距離.19、(1)證明見解析(2)證明見解析【解題分析】

(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【題目詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【題目點撥】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.20、(1);(2)證明見解析【解題分析】

(1)根據(jù),,成等比數(shù)列,有,結合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調性即可.【題目詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【題目點撥】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.21、(1)(2)【解題分析】

(1)利用消參法以及點求解出的普通方程,根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論