2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁(yè)
2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁(yè)
2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁(yè)
2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁(yè)
2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024年浙江省麗水四校數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.2.已知邊長(zhǎng)為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.83.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.204.已知函數(shù)滿足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或5.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽(yáng)太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽(yáng)太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.6.復(fù)數(shù)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知向量,是單位向量,若,則()A. B. C. D.8.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說(shuō)法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱9.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.1510.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.11.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度B.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長(zhǎng)度C.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長(zhǎng)度D.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度12.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則________.14.在平面直角坐標(biāo)系中,曲線在點(diǎn)處的切線與x軸相交于點(diǎn)A,其中e為自然對(duì)數(shù)的底數(shù).若點(diǎn),的面積為3,則的值是______.15.已知函數(shù),若,則的取值范圍是__16.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.18.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到距離的取值范圍.20.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.21.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.22.(10分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

由圖象可以求出周期,得到,根據(jù)圖象過(guò)點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【題目詳解】由圖象知,所以,,又圖象過(guò)點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【題目點(diǎn)撥】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.2、B【解題分析】

取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【題目詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【題目點(diǎn)撥】本題考查平面向量數(shù)量積的求解問(wèn)題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.3、B【解題分析】

由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【題目詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【題目點(diǎn)撥】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.4、C【解題分析】

簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【題目詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【題目點(diǎn)撥】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.5、B【解題分析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【題目詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【題目點(diǎn)撥】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.6、A【解題分析】

試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系7、C【解題分析】

設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【題目詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時(shí),;當(dāng)時(shí),;綜上所述:.故選:C.【題目點(diǎn)撥】本題考查向量的模、夾角計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意的兩種情況.8、B【解題分析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【題目詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【題目點(diǎn)撥】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.9、B【解題分析】,∴,選B.10、C【解題分析】

由每個(gè)函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【題目詳解】因?yàn)楹瘮?shù)和在遞增,而在遞減.故選:C【題目點(diǎn)撥】本題主要考查常見(jiàn)簡(jiǎn)單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.11、B【解題分析】

分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),

得到再將得到的圖象向左平移個(gè)單位長(zhǎng)度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.12、B【解題分析】

根據(jù)在上投影為,以及,可得;再對(duì)所求模長(zhǎng)進(jìn)行平方運(yùn)算,可將問(wèn)題轉(zhuǎn)化為模長(zhǎng)和夾角運(yùn)算,代入即可求得.【題目詳解】在上投影為,即又本題正確選項(xiàng):【題目點(diǎn)撥】本題考查向量模長(zhǎng)的運(yùn)算,對(duì)于含加減法運(yùn)算的向量模長(zhǎng)的求解,通常先求解模長(zhǎng)的平方,再開(kāi)平方求得結(jié)果;解題關(guān)鍵是需要通過(guò)夾角取值范圍的分析,得到的最小值.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

項(xiàng)和轉(zhuǎn)化可得,討論是否滿足,分段表示即得解【題目詳解】當(dāng)時(shí),由已知,可得,∵,①故,②由①-②得,∴.顯然當(dāng)時(shí)不滿足上式,∴故答案為:【題目點(diǎn)撥】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.14、【解題分析】

對(duì)求導(dǎo),再根據(jù)點(diǎn)的坐標(biāo)可得切線方程,令,可得點(diǎn)橫坐標(biāo),由的面積為3,求解即得.【題目詳解】由題,,切線斜率,則切線方程為,令,解得,又的面積為3,,解得.故答案為:【題目點(diǎn)撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的切線,難度不大.15、【解題分析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【題目詳解】當(dāng)時(shí),,,當(dāng)時(shí),,所以,故的取值范圍是.故答案為:.【題目點(diǎn)撥】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對(duì)數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.16、【解題分析】

依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【題目詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【題目點(diǎn)撥】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問(wèn)題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)①;②詳見(jiàn)解析.【解題分析】

(1)依題意可表示,,相減得,由等比數(shù)列通項(xiàng)公式轉(zhuǎn)化為首項(xiàng)與公比,解得答案,并由其都是正項(xiàng)數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項(xiàng)并整理可得遞推關(guān)系,由等差數(shù)列的通項(xiàng)公式即可得答案;②由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時(shí),成立,當(dāng),時(shí),表示,由分組求和與正項(xiàng)數(shù)列性質(zhì)放縮不等式得證.【題目詳解】解:(1)依題意可得,,兩式相減,得,所以,因?yàn)?,所以,且,解?(2)①因?yàn)椋?,兩式相減,得,即.因?yàn)?,所以,?而當(dāng)時(shí),,可得,故,所以對(duì)任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項(xiàng)為1,所以數(shù)列的通項(xiàng)公式為.②因?yàn)椋?,兩式相減,得,即,所以對(duì)任意的正整數(shù),都有.令,而當(dāng)時(shí),顯然成立,所以當(dāng),時(shí),,所以,即,所以,得證.【題目點(diǎn)撥】本題考查由前n項(xiàng)和關(guān)系求等比數(shù)列公比,求等差數(shù)列通項(xiàng)公式,還考查了由分組求和表示數(shù)列和并由正項(xiàng)數(shù)列放縮證明不等式,屬于難題.18、(1)見(jiàn)解析(2)【解題分析】

(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【題目詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【題目點(diǎn)撥】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.19、(1),.(2)【解題分析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點(diǎn)到直線距離公式,即可求得答案.【題目詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為圓心到的距離為,點(diǎn)到的距離的取值范圍是.【題目點(diǎn)撥】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.20、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項(xiàng)公式可得出數(shù)列的通項(xiàng)公式;(Ⅱ)求得,然后利用裂項(xiàng)相消法可求得.【題目詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項(xiàng)公式為;(Ⅱ),.【題目點(diǎn)撥】本題考查等比數(shù)列通項(xiàng)的求解,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于基礎(chǔ)題.21、(Ⅰ)見(jiàn)解析;(Ⅱ).【解題分析】試題分析:(1)取中點(diǎn),連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點(diǎn),連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因?yàn)椋匀?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論