版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濟(jì)南市高級(jí)中學(xué)2021年高三數(shù)學(xué)文測(cè)試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知全集,集合,則
(A)
(B)
(C)
(D)參考答案:【知識(shí)點(diǎn)】補(bǔ)集及其運(yùn)算.A1A
解析:根據(jù)補(bǔ)集的定義,?UA是由所有屬于集合U但不屬于A的元素構(gòu)成的集合,由已知,有且僅有0,4符合元素的條件.?UA={0,4},故選A.【思路點(diǎn)撥】根據(jù)補(bǔ)集的定義直接求解:?UA是由所有屬于集合U但不屬于A的元素構(gòu)成的集合.2.某學(xué)校安排甲、乙、丙、丁四位同學(xué)參加數(shù)學(xué)、物理、化學(xué)競(jìng)賽,要求每位同學(xué)僅報(bào)一科,每科至少有一位同學(xué)參加,且甲、乙不能參加同一學(xué)科,則不同的安排方法有()A.36種B.30種C.24種D.6種參考答案:B考點(diǎn):計(jì)數(shù)原理的應(yīng)用.專題:排列組合.分析:先不考慮學(xué)生甲,乙不能同時(shí)參加同一學(xué)科競(jìng)賽,從4人中選出兩個(gè)人作為一個(gè)元素,同其他兩個(gè)元素在三個(gè)位置上排列,其中有不符合條件的,即甲乙兩人在同一位置,去掉即可.解答:解:從4人中選出兩個(gè)人作為一個(gè)元素有C42種方法,同其他兩個(gè)元素在三個(gè)位置上排列C42A33=36,其中有不符合條件的,即學(xué)生甲,乙同時(shí)參加同一學(xué)科競(jìng)賽有A33種結(jié)果,∴不同的參賽方案共有36﹣6=30,故選:B點(diǎn)評(píng):對(duì)于復(fù)雜一點(diǎn)的排列計(jì)數(shù)問(wèn)題,有時(shí)要先整體再部分,有時(shí)排列組合和分步計(jì)數(shù)原理,分類計(jì)數(shù)原理一起出現(xiàn),有時(shí)分類以后,每類方法并不都是一步完成的,必須在分類后又分步,綜合利用兩個(gè)原理解決,即類中有步,步中有類.3.設(shè)映射是集合到集合的映射。若對(duì)于實(shí)數(shù),在中不存在對(duì)應(yīng)的元素,則實(shí)數(shù)的取值范圍是A.
B.C.D.參考答案:B4.已知集合,則A.
B.
C.
D.參考答案:.試題分析:由題意知,,所以,故應(yīng)選.考點(diǎn):1、集合間的基本關(guān)系;5.一個(gè)幾何體的三視圖如圖,則該幾何體的表面積為(
)A.
B.
C.
D.參考答案:D6.已知函數(shù)f(x)是定義在[a﹣1,2a]上的偶函數(shù),且當(dāng)x>0時(shí),f(x)單調(diào)遞增,則關(guān)于x的不等式f(x﹣1)>f(a)的解集為()A. B.C. D.隨a的值而變化參考答案:C【考點(diǎn)】奇偶性與單調(diào)性的綜合.【分析】具有奇偶性的函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱可求得a值,由偶函數(shù)性質(zhì)知,f(x﹣1)>f(a)可化為f(|x﹣1|)>f(),根據(jù)f(x)的單調(diào)性可得|x﹣1|>,再考慮到定義域即可解出不等式.【解答】解:因?yàn)閒(x)是定義在[a﹣1,2a]上的偶函數(shù),所以(a﹣1)+2a=0,解得a=.則f(x)定義域?yàn)閇﹣,].由偶函數(shù)性質(zhì)知,f(x﹣1)>f(a)可化為f(|x﹣1|)>f(),又x>0時(shí),f(x)單調(diào)遞增,所以|x﹣1|>①,又﹣≤x﹣1②,聯(lián)立①②解得x<或<x≤,故不等式f(x﹣1)>f(a)的解集為[,)∪(,].故選C.7.在中,內(nèi)角的對(duì)邊分別為,若的面積為,且,則等于(
)A.
B.
C.
D.參考答案:【知識(shí)點(diǎn)】正弦定理余弦定理C8C由余弦定理,聯(lián)立,得,,即,結(jié)合,得或(舍),從而,,故選C.【思路點(diǎn)撥】聯(lián)立和,得,從而可求.8.已知集合A={x|x<a},B={x|1≤x<2},且A∪(?UB)=R,則實(shí)數(shù)a的取值范圍是(
)A.a(chǎn)≤1 B.a(chǎn)<1 C.a(chǎn)≥2 D.a(chǎn)>2參考答案:C【考點(diǎn)】并集及其運(yùn)算.【專題】集合.【分析】根據(jù)全集R以及B求出B的補(bǔ)集,由A與B補(bǔ)集的并集為R,確定出a的范圍即可.解:∵B={x|1≤x<2},∴?RB={x|x<1或x≥2},∵A={x|x<a},A∪(?RB)=R,∴a的范圍為a≥2,故選:C.【點(diǎn)評(píng)】此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.9.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為A.
B.
C.
D.參考答案:A10.若,則方程有實(shí)數(shù)根的概率為(
)..
.
.
.參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)f(x)=ax+的值域?yàn)開(kāi)________.參考答案:令則且,所以,所以原函數(shù)等價(jià)為,函數(shù)的對(duì)稱軸為,函數(shù)開(kāi)口向上。因?yàn)椋院瘮?shù)在上函數(shù)單調(diào)遞增,所以,即,所以函數(shù)的值域?yàn)椤?2.在中,若,則.參考答案:313.已知雙曲線的一條漸近線和圓相切,則該雙曲線的離心率為
參考答案:略14.若,則下列不等式對(duì)一切滿足條件的恒成立的是
.(寫(xiě)出所有正確命題的編號(hào)).①;
②;
③;④;
⑤參考答案:①③⑤15.某幾何體的三視圖如圖所示(單位cm)則3個(gè)這樣的幾何體的體積之和為_(kāi)________參考答案:16.對(duì)于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對(duì)任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個(gè)寬度為d的通道.給出下列函數(shù):①f(x)=;②f(x)=sinx;③f(x)=;④f(x)=其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有(寫(xiě)出所有正確的序號(hào)).參考答案:①③④【考點(diǎn)】函數(shù)恒成立問(wèn)題.【分析】對(duì)4個(gè)函數(shù)逐個(gè)分析其值域或者圖象的特征,即可得出結(jié)論.【解答】解:函數(shù)①,在區(qū)間[1,+∞)上的值域?yàn)椋?,1],滿足0≤f(x)≤1,∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1;函數(shù)②,在區(qū)間[1,+∞)上的值域?yàn)閇﹣1,1],滿足﹣1≤f(x)≤1,∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為2;函數(shù)③,在區(qū)間[1,+∞)上的圖象是雙曲線x2﹣y2=1在第一象限的部分,其漸近線為y=x,滿足x﹣1≤f(x)≤x,∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1;函數(shù)④,在區(qū)間[1,+∞)上的值域?yàn)閇0,],滿足0≤f(x)≤1,∴該函數(shù)在區(qū)間[1,+∞)上通道寬度可以為1.故滿足題意的有①③④.故答案為①③④.17.已知函數(shù)存在反函數(shù),若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則的值是
參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知點(diǎn)、,()是曲線C上的兩點(diǎn),點(diǎn)、關(guān)于軸對(duì)稱,直線、分別交軸于點(diǎn)和點(diǎn),(Ⅰ)用、、、分別表示和;(Ⅱ)某同學(xué)發(fā)現(xiàn),當(dāng)曲線C的方程為:時(shí),是一個(gè)定值與點(diǎn)、、的位置無(wú)關(guān);請(qǐng)你試探究當(dāng)曲線C的方程為:時(shí),的值是否也與點(diǎn)M、N、P的位置無(wú)關(guān);(Ⅲ)類比(Ⅱ)的探究過(guò)程,當(dāng)曲線C的方程為時(shí),探究與經(jīng)加、減、乘、除的某一種運(yùn)算后為定值的一個(gè)正確結(jié)論.(只要求寫(xiě)出你的探究結(jié)論,無(wú)須證明).參考答案:解:(Ⅰ)依題意N(k,-l),且∵klmn≠0及MP、NP與軸有交點(diǎn)知:……2分M、P、N為不同點(diǎn),直線PM的方程為,……3分則,同理可得
ks5u…6分(Ⅱ)∵M(jìn),P在橢圓C:上,,(定值).∴的值是與點(diǎn)M、N、P位置無(wú)關(guān)
.……………11分(Ⅲ)一個(gè)探究結(jié)論是:.
………14分提示:依題意,,.∵M(jìn),P在拋物線C:y2=2px(p>0)上,∴n2=2pm,l2=2pk..∴為定值.19.(13分)如圖所示,設(shè)F是拋物線E:x2=2py(p>0)的焦點(diǎn),過(guò)點(diǎn)F作斜率分別為k1、k2的兩條直線l1、l2,且k1?k2=﹣1,l1與E相交于點(diǎn)A、B,l2與E相交于點(diǎn)C,D.已知△AFO外接圓的圓心到拋物線的準(zhǔn)線的距離為3(O為坐標(biāo)原點(diǎn)).(1)求拋物線E的方程;(2)若?+?=64,求直線l1、l2的方程.參考答案:(1)由題意,F(xiàn)(0,),△AFO外接圓的圓心在線段OF的垂直平分線y=上,∴+=3,∴p=4.∴拋物線E的方程是x2=8y;(2)設(shè)直線l1的方程y=k1x+2,代入拋物線方程,得y2﹣(8k12+4)y+4=0設(shè)A(x1,y1),B(x2,y2),則y1+y2=8k12+4,y1y2=4設(shè)C(x3,y3),D(x4,y4),同理可得y3+y4=+4,y3y4=4∴?+?=32+16(k12+)≥64,當(dāng)且僅當(dāng)k12=,即k1=±1時(shí)取等號(hào),∴直線l1、l2的方程為y=x+2或y=﹣x+2.20.(本小題滿分13分)已知各項(xiàng)均為正數(shù)的數(shù)列中,,為數(shù)列的前項(xiàng)和.(Ⅰ)若數(shù)列,都是等差數(shù)列,求數(shù)列的通項(xiàng)公式;(Ⅱ)若,試比較與的大?。畢⒖即鸢福好}意圖:本題綜合考察等差數(shù)列的通項(xiàng)公式、裂項(xiàng)求和,中等題.(Ⅰ)數(shù)列,都是等差數(shù)列,設(shè)數(shù)列的公差為,則
得,
∴
…………………5分(Ⅱ)由于①當(dāng)時(shí),②由①-②得:又
∴
,………10分又∴∴
……………13分21.某中學(xué)高一期中考試結(jié)束后,從高一年級(jí)1000名學(xué)生中任意抽取50名學(xué)生,將這50名學(xué)生的某一科的考試成績(jī)(滿分150分)作為樣本進(jìn)行統(tǒng)計(jì),并作出樣本成績(jī)的頻率分布直方圖(如圖).(1)由于工作疏忽,將成績(jī)[130,140)的數(shù)據(jù)丟失,求此區(qū)間的人數(shù)及頻率分布直方圖的中位數(shù);(結(jié)果保留兩位小數(shù))(2)若規(guī)定考試分?jǐn)?shù)不小于120分為優(yōu)秀,現(xiàn)從樣本的優(yōu)秀學(xué)生中任意選出3名學(xué)生,參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì).設(shè)X表示參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì)的學(xué)生分?jǐn)?shù)不小于130分的學(xué)生人數(shù),求X的分布列及期望;(3)視樣本頻率為概率.由于特殊原因,有一個(gè)學(xué)生不能到學(xué)校參加考試,根據(jù)以往考試成績(jī),一般這名學(xué)生的成績(jī)應(yīng)在平均分左右.試根據(jù)以上數(shù)據(jù),說(shuō)明他若參加考試,可能得多少分?(每組數(shù)據(jù)以區(qū)問(wèn)的中點(diǎn)值為代表)參考答案:(1)8,117.14;(2)見(jiàn)解析;(3)115.4【分析】(1)先求出這50名學(xué)生成績(jī)?cè)诟鲄^(qū)間的頻率及人數(shù),由此能求出,的頻率為0.16,人數(shù)為8,從而能求出中位數(shù).(2)考試分?jǐn)?shù)不小于120分的優(yōu)秀學(xué)生有23人,表示參加教學(xué)交流會(huì)的不小于130分的學(xué)生人數(shù)的取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出的分布列和.(3)利用頻率分布直方圖能求出平均分.【詳解】(1)這50名學(xué)生成績(jī)?cè)诟鲄^(qū)間的頻率及人數(shù)如下:[60,70)的頻率為0.02,人數(shù)為1,[70,80)的頻率為0.04,人數(shù)為2,[80,90)的頻率為0.02,人數(shù)為1,[90,100)的頻率為0.14,人數(shù)為7,[100,110)的頻率為0.18,人數(shù)為9,[110,120)的頻率為0.14,人數(shù)為7,[120,130)的頻率為0.2,人數(shù)為10,[140,150)的頻率為0.1,人數(shù)為5,∴[130,140)的頻率為0.16,人數(shù)為8,∵中位數(shù)把頻率分布直方圖分成左右面積相等,設(shè)中位數(shù)為m,[60,110)的頻率和為:0.02+0.04+0.02+0.14+0.18=0.4,[110,120)的頻率為0.14,∴(m﹣110)×0.14=0.5﹣0.4=0.1,解得m=≈117.14.所以頻率分布直方圖的中位數(shù)為117.14.(2)考試分?jǐn)?shù)不小于120分的優(yōu)秀學(xué)生有23人,X表示參加教學(xué)交流會(huì)的不小于130分的學(xué)生人數(shù)的取值為0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3),∴X的分布列為:0123
E(X);(3)平均分W=65×0.02+75×0.04+85×0.02+95×0.14+105×0.18+115×0.14+125×0.2+135×0.16+145×0.1=115.4,∴該學(xué)生可能得分為115.4分.【點(diǎn)睛】本題考查頻率、中位數(shù)、平均數(shù)、離散型隨機(jī)變量概率分布列、數(shù)學(xué)期望的求法,考查頻率分布直方圖、古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.22.(本題滿分13分)已知橢圓:的離心率為,右焦點(diǎn)到直線的距離為.(Ⅰ)求橢圓的方程;(Ⅱ)過(guò)橢圓右焦點(diǎn)F2斜率為()的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.參
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五便利店員工培訓(xùn)與發(fā)展合同3篇
- 2025年度農(nóng)夫山泉與知名餐飲企業(yè)聯(lián)合供應(yīng)協(xié)議合同4篇
- 2025年內(nèi)分泌系統(tǒng)治療合同
- 房地產(chǎn)市場(chǎng)的房?jī)r(jià)波動(dòng)與調(diào)控政策
- 2025年滬教版必修3歷史上冊(cè)月考試卷含答案
- 2025年室外廣告分期支付合同
- 2025年分期付款衣物購(gòu)買合同
- 2025年分期購(gòu)買商品合同
- 二零二五年度寧波房地產(chǎn)經(jīng)紀(jì)服務(wù)合同示范文本4篇
- 2025版智能門衛(wèi)系統(tǒng)項(xiàng)目用工合同范本4篇
- 非ST段抬高型急性冠脈綜合征診斷和治療指南(2024)解讀
- 煤礦反三違培訓(xùn)課件
- 向流程設(shè)計(jì)要效率
- 安全文明施工的管理要點(diǎn)
- 2024年中國(guó)航空發(fā)動(dòng)機(jī)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 當(dāng)代中外公司治理典型案例剖析(中科院研究生課件)
- 動(dòng)力管道設(shè)計(jì)手冊(cè)-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
- Python繪圖庫(kù)Turtle詳解(含豐富示例)
- 煤礦機(jī)電設(shè)備檢修技術(shù)規(guī)范完整版
- 榆林200MWp并網(wǎng)光伏發(fā)電項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論