版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.的值是A.0 B.C. D.12.為了得到函數(shù)的圖象,可以將函數(shù)的圖象A.向右平移 B.向右平移C.向左平移 D.向左平移3.下列函數(shù)中是增函數(shù)的為()A. B.C. D.4.命題“,使得”的否定是()A., B.,C., D.,5.已知函數(shù)的部分圖象如圖所示,則下列說法正確的是()A.該圖象對應的函數(shù)解析式為B.函數(shù)的圖象關于直線對稱C.函數(shù)的圖象關于點對稱D.函數(shù)在區(qū)間上單調(diào)遞減6.設函數(shù)的定義域為R,滿足,且當時,.若對任意,都有,則m的最大值是()A. B.C. D.7.化簡=A.sin2+cos2 B.sin2-cos2C.cos2-sin2 D.±(cos2-sin2)8.函數(shù)在區(qū)間的圖象大致是()A. B.C. D.9.對于函數(shù)的圖象,關于直線對稱;關于點對稱;可看作是把的圖象向左平移個單位而得到;可看作是把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍而得到以上敘述正確的個數(shù)是A.1個 B.2個C.3個 D.4個10.關于函數(shù)下列敘述有誤的是A.其圖象關于直線對稱B.其圖像可由圖象上所有點橫坐標變?yōu)樵瓉淼谋兜玫紺.其圖像關于點對稱D.其值域為11.已知點A(1,2),B(3,1),則線段AB的垂直平分線的方程是()A. B.C. D.12.已知函數(shù),則下列是函數(shù)圖象的對稱中心的坐標的是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.的定義域為_________;若,則_____14.對于定義在區(qū)間上的兩個函數(shù)和,如果對任意的,均有不等式成立,則稱函數(shù)與在上是“友好”的,否則稱為“不友好”的(1)若,,則與在區(qū)間上是否“友好”;(2)現(xiàn)在有兩個函數(shù)與,給定區(qū)間①若與在區(qū)間上都有意義,求的取值范圍;②討論函數(shù)與與在區(qū)間上是否“友好”15.函數(shù)的圖象恒過定點,點在冪函數(shù)的圖象上,則=____________16.如圖,在四棱錐中,平面平面,是邊長為4的等邊三角形,四邊形是等腰梯形,,則四棱錐外接球的表面積是____________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),函數(shù)的最小正周期為.(1)求函數(shù)的解析式,及當時,的值域;(2)當時,總有,使得,求實數(shù)m的取值范圍.18.一種專門占據(jù)內(nèi)存的計算機病毒,能在短時間內(nèi)感染大量文件,使每個文件都不同程度地加長,造成磁盤空間的嚴重浪費.這種病毒開機時占據(jù)內(nèi)存2KB,每3分鐘后病毒所占內(nèi)存是原來的2倍.記x分鐘后的病毒所占內(nèi)存為yKB.(1)求y關于x的函數(shù)解析式;(2)如果病毒占據(jù)內(nèi)存不超過1GB(1GB=21019.已知,且為第二象限角(1)求的值;(2)求值.20.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設t=sinx+cosx,將函數(shù)f(x)表示為關于t的函數(shù)g(t),求g(t)的解析式;(2)對任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍21.某生物研究者于元旦在湖中放入一些風眼蓮(其覆蓋面積為),這些風眼蓮在湖中的蔓延速度越來越快,二月底測得鳳眼蓮的覆蓋面積為,三月底測得鳳眼蓮的覆蓋面積為,鳳眼蓮的覆蓋面積(單位:)與月份(單位:月)的關系有兩個函數(shù)模型與)可供選擇(1)試判斷哪個函數(shù)模型更合適并求出該模型的解析式;(2)求鳳眼蓮覆蓋面積是元旦放入鳳眼蓮面積倍以上的最小月份.(參考數(shù)據(jù):,)22.2020年初至今,新冠肺炎疫情襲擊全球,對人民生命安全和生產(chǎn)生活造成嚴重影響.在黨和政府強有力抗疫領導下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復工復產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2022年舉行某產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費用m萬元(m≥0)滿足x=4?.已知生產(chǎn)該產(chǎn)品的固定成本為8萬元,生產(chǎn)成本為16萬元/萬件,廠家將產(chǎn)品的銷售價格定為萬元/萬件(產(chǎn)品年平均成本)的1.5倍.(1)將2022年該產(chǎn)品的利潤y萬元表示為年促銷費用m萬元的函數(shù);(2)該廠家2022年的促銷費用投入多少萬元時,廠家的利潤最大?
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】利用誘導公式和和差角公式直接求解.【詳解】故選:B2、B【解析】先將,進而由平移變換規(guī)律可得解.【詳解】函數(shù),所以只需將向右平移可得.故選B.【點睛】本題主要考查了三角函數(shù)的圖像平移變換,解題的關鍵是將函數(shù)名統(tǒng)一,需要利用誘導公式,屬于中檔題.3、D【解析】根據(jù)基本初等函數(shù)的性質逐項判斷后可得正確的選項.【詳解】對于A,為上的減函數(shù),不合題意,舍.對于B,為上的減函數(shù),不合題意,舍.對于C,在為減函數(shù),不合題意,舍.對于D,為上的增函數(shù),符合題意,故選:D.4、B【解析】根據(jù)特稱命題的否定的知識確定正確選項.【詳解】原命題是特稱命題,其否定是全稱命題,注意否定結論,所以,命題“,使得”的否定是,.故選:B5、B【解析】先依據(jù)圖像求得函數(shù)的解析式,再去代入驗證對稱軸、對稱中心、單調(diào)區(qū)間的說法.【詳解】由圖象可知,即,所以,又,可得,又因為所以,所以,故A錯誤;當時,.故B正確;當時,,故C錯誤;當時,則,函數(shù)不單調(diào)遞減.故D錯誤故選:B6、A【解析】分別求得,,,,,,,時,的最小值,作出的簡圖,因為,解不等式可得所求范圍【詳解】解:因為,所以,當時,的最小值為;當時,,,由知,,所以此時,其最小值為;同理,當,時,,其最小值為;當,時,的最小值為;作出如簡圖,因為,要使,則有解得或,要使對任意,都有,則實數(shù)的取值范圍是故選:A7、A【解析】利用誘導公式化簡根式內(nèi)的式子,再根據(jù)同角三角函數(shù)關系式及大小關系,即可化簡【詳解】根據(jù)誘導公式,化簡得又因為所以選A【點睛】本題考查了三角函數(shù)式的化簡,關鍵注意符號,屬于中檔題8、C【解析】判斷函數(shù)非奇非偶函數(shù),排除選項A、B,在計算時的函數(shù)值可排除選項D,進而可得正確選項.【詳解】因為,且,所以既不是奇函數(shù)也不是偶函數(shù),排除選項A、B,因為,排除選項D,故選:C【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.9、B【解析】由判斷;由判斷;由的圖象向左平移個單位,得到的圖象判斷;由的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象判斷.【詳解】對于函數(shù)的圖象,令,求得,不是最值,故不正確;令,求得,可得的圖象關于點對稱,故正確;把的圖象向左平移個單位,得到的圖象,故不正確;把的圖象上所有點的縱坐標不變,橫坐標縮短到原來的倍,得到函數(shù)的圖象,故正確,故選B【點睛】本題通過對多個命題真假的判斷,綜合考查三角函數(shù)的對稱性以及三角函數(shù)的圖象的變換規(guī)律,屬于中檔題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.10、C【解析】由已知,該函數(shù)關于點對稱.故選C.11、B【解析】因為線段的垂直平分線上的點到點,的距離相等,所以即:,化簡得:故選12、A【解析】根據(jù)三角函數(shù)性質計算對稱中心【詳解】令,則,故圖象的對稱中心為故選:A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、①.;②.3.【解析】空一:根據(jù)正切型函數(shù)的定義域進行求解即可;空二:根據(jù)兩角和的正切公式進行求解即可.【詳解】空一:由函數(shù)解析式可知:,所以該函數(shù)的定義域為:;空二:因為,所以.故答案為:;14、(1)是;(2)①;②見解析【解析】(1)按照定義,只需判斷在區(qū)間上是否恒成立;(2)①由題意解不等式組即可;②假設存在實數(shù),使得與與在區(qū)間上是“友好”的,即,即,只需求出函數(shù)在區(qū)間上的最值,解不等式組即可.【詳解】(1)由已知,,因為時,,所以恒成立,故與在區(qū)間上是“友好”的.(2)①與在區(qū)間上都有意義,則必須滿足,解得,又且,所以的取值范圍為.②假設存在實數(shù),使得與與在區(qū)間上是“友好”的,則,即,因為,則,,所以在的右側,又復合函數(shù)的單調(diào)性可得在區(qū)間上為減函數(shù),從而,,所以,解得,所以當時,與與在區(qū)間上是“友好”的;當時,與與在區(qū)間上是“不友好”的.【點睛】本題考查函數(shù)的新定義問題,主要涉及到不等式恒成立的問題,考查學生轉化與化歸的思想、數(shù)學運算求解能力,是一道有一定難度的題.15、【解析】因為函數(shù)圖象恒過定點,則可之令2x-3=1,x=2,函數(shù)值為4,故過定點(2,4),然后根據(jù)且點在冪函數(shù)的圖象上,設,故可知=9,故答案為9.考點:對數(shù)函數(shù)點評:本題考查了對數(shù)函數(shù)圖象過定點(1,0),即令真數(shù)為1求對應的x和y,則是所求函數(shù)過定點的坐標16、##【解析】先根據(jù)面面垂直,取△的外接圓圓心G,梯形的外接圓圓心F,分別過兩點作對應平面的垂線,找到交點為外接球球心,再通過邊長關系計算半徑,代入球的表面積公式即得結果.【詳解】如圖,取的中點,的中點,連,,在上取點,使得,由是邊長為4的等邊三角形,四邊形是等腰梯形,,可得,,即梯形的外接圓圓心為F,分別過點、作平面、平面的垂線,兩垂線相交于點,顯然點為四棱錐外接球的球心,由題可得,,,則四棱錐外接球的半徑,故四棱錐外接球的表面積為故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),值域為(2)【解析】(1)由正弦函數(shù)的周期求得得解析式,利用正弦函數(shù)的性質可得函數(shù)值域;(2)利用時,的值域是集合的子集,分類討論求得的最大值和最小值,得出不等關系,從而得出結論【小問1詳解】,.因為,所以,所以的值域為.【小問2詳解】當時,總有,使得,即時,函數(shù)的值域是的子集,即當時,.函數(shù),其對稱軸,開口向上.當時,即,可得,,所以,解得;當即時,在上單調(diào)遞減,在上單調(diào)遞增;所以,所以.當時,即,可得,,所以,此時無解.綜上可得實數(shù)m的取值范圍為.18、(1)y=2x3(2)57分鐘【解析】(1)根據(jù)題意可得,y關于x的函數(shù)解析式;(2)先根據(jù)題意,換算病毒占據(jù)的最大內(nèi)存1GB【小問1詳解】因為這種病毒開機時占據(jù)內(nèi)存2KB,每3分鐘后病毒所占內(nèi)存是原來的2倍.所以x分鐘后的病毒所占內(nèi)存為,得y=2x3【小問2詳解】因為病毒占據(jù)內(nèi)存不超過1GB時,計算機能夠正常使用,故有2x3+1所以本次開機計算機能正常使用的時長為57分鐘.19、(1)cos,(2)【解析】(1)通過三角恒等式先求,再求即可;(2)先通過誘導公式進行化簡,再將,的值代入即可得結果.【小問1詳解】因為sin=,所以,且是第二象限角,所以cos=,從而【小問2詳解】原式=20、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進而即可求出的取值范圍;接下來對已知的函數(shù)利用進行表示;對于(2),首先由的取值范圍,求出的取值范圍,再對已知進行恒等變形可得在區(qū)間上恒成立,據(jù)此即可得到關于的不等式,解不等式即可求出的取值范圍.試題解析:(1),因為,所以,其中,即,.(2)由(1)知,當時,,又在區(qū)間上單調(diào)遞增,所以,從而,要使不等式在區(qū)間上恒成立,只要,解得:.點晴:本題考查是求函數(shù)的解析式及不等式恒成立問題.(1)首先,可求出的取值范圍;接下來對已知的函數(shù)利用進行表示;(2)先求二次函數(shù),再解不等式.21、(1)函數(shù)模型較為合適,且該函數(shù)模型的解析式為;(2)月份.【解析】(1)根據(jù)兩個函數(shù)模型增長的快慢可知函數(shù)模型較為合適,將點、代入函數(shù)解析式,求出、的值,即可得出函數(shù)模型的解析式;(2)分析得出,解此不等式即可得出結論.【詳解】(1)由題設可知,兩個函數(shù)、)在上均為增函數(shù),隨著的增大,函數(shù)的值增加得越來越快,而函數(shù)的值增加得越來越慢,由于風眼蓮在湖中的蔓延速度越來越快,故而函數(shù)模型滿足要求.由題意可得,解得,,故該函數(shù)模型的解析式為;(2)當時,,故元旦放入鳳眼蓮的面積為,由,即,故,由于,故.因此,鳳眼蓮覆蓋面積是元旦放入鳳眼蓮面積倍以上的最小月份是月份.【點睛】思路點睛:解函數(shù)應用題的一般程序:第一步:審題——弄清題意,分清條件和結論,理順數(shù)量關系;第二步:建?!獙⑽淖终Z言轉化成數(shù)學語言,用數(shù)學知識建立相應的數(shù)學模型;第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年度一次性技術咨詢服務采購合同12篇
- 2025年度速錄服務與智能語音助手融合合同3篇
- 2025年度企業(yè)安全生產(chǎn)責任協(xié)議書范本6篇
- 2025年度高空作業(yè)安全生產(chǎn)責任與保障協(xié)議3篇
- 2025年豬圈建造與新能源利用合同模板3篇
- 二零二四年專業(yè)債務清收公司委托合同3篇
- 2025版螺旋鋼管智能制造與自動化升級合同4篇
- 二零二五年度跨境電商園區(qū)場地租賃及物流服務合同2篇
- 2024租養(yǎng)雞場的合同范本
- 二零二四事業(yè)單位項目合作合同示范文本2篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護理安全用氧培訓課件
- 《三國演義》中人物性格探析研究性課題報告
- 注冊電氣工程師公共基礎高數(shù)輔導課件
- 土方勞務分包合同中鐵十一局
- 乳腺導管原位癌
- 冷庫管道應急預案
- 司法考試必背大全(涵蓋所有法律考點)
- 公共部分裝修工程 施工組織設計
- 《學習教育重要論述》考試復習題庫(共250余題)
- 裝飾裝修施工及擔保合同
評論
0/150
提交評論